

City of Kingsport

Stormwater Management Manual

TABLE OF CONTENTS

Introduction

Chapter 1: The Need for Stormwater Quality Management

- 1.1 Impacts of Development and Stormwater Runoff
- 1.2 Addressing Stormwater Impacts
- 1.3 Comprehensive Stormwater Management Planning
- 1.4. Stormwater Quality Treatment Rationale

Chapter 2: Regulatory and Planning Guidance

- 2.1 Introduction
- 2.2 Applicable Regulations
- 2.3 Stormwater Management Plans
- 2.4 Bonds
- 2.5 As-Builts

Chapter 3: Stormwater Quality Standards

- 3.1 Water Quality Protection Approach
- 3.2 General Policies
- 3.3 Stormwater Quality Management
- 3.4 Channel Protection
- 3.5 Downstream Impact Analysis

Chapter 4: Design and Maintenance of Structural BMPs

- 4.1 Design Standards Policies
- 4.2 BMP Description and Selection Information
- 4.3 General Application Water Quality BMP
- 4.4 Limited Application Water Quality BMP

Chapter 5: Better Site Design Methods (WQv Credits)

- 5.1 Introduction
- 5.2 Water Quality Volume (WQv) Credits
- 5.3 Better Site Design Practices

Chapter 6: Vegetated Buffers

- 6.1 Introduction
- 6.2 Minimum Requirements
- 6.3 Level Spreaders
- 6.4 Considerations for Buffer Areas

Chapter 7: BMP Maintenance

- 7.1 Introduction
- 7.2 BMP Inspection and Maintenance

Appendices

- A. Stormwater Management Ordinance
- B. Enforcement Response Plan
- C. Contact Information
- D. Plan Submittal Checklists
- E. As-Built Checklist
- F. Maintenance Covenants

Introduction

Preface

Stormwater management in northeast Tennessee has changed significantly in recent years. Increasing population and the associated need for housing and services, Federal and State regulatory requirements for stormwater quality control and the desire to protect human life, property, aquatic habitats and the quality of life have resulted in the need to better manage stormwater in the developed and developing areas. The communities of Kingsport, Johnson City, Bristol and Elizabethton recognized these changes and formed the Northeast Tennessee Regional Stormwater Planning Group to provide insight and guidance to the challenges facing this area. This Stormwater Management Manual is the collaborative effort of this group and will provide consistent stormwater management policies throughout northeast Tennessee.

This manual has been developed to assist property owners, developers, engineers and landscape architects in understanding and implementing the requirements for stormwater management. This manual represents the participating community's efforts to move forward with an approach to stormwater management that integrates drainage design, stormwater quantity and water quality considerations. The Northeast Tennessee Regional Stormwater Planning Group views stormwater as an important resource and its management as an opportunity for our communities. The goal of this manual is to develop and promote a consistent and effective approach for the implementation of stormwater management in northeast Tennessee.

Acknowledgements

This Stormwater Management Manual reflects the hard work, time and contributions of many individuals and organizations. This manual is the culmination of a collaborative effort from the following entities:

- the City of Kingsport;
- the City of Johnson City;
- the City of Bristol, Tennessee; and
- the City of Elizabethton

Thanks to the City Councils of each community for supporting this very important project.

References/Sources

Although this manual was developed to provide specific information for stormwater management and property development in northeast Tennessee, useful regulations and guidance from other communities were used to develop this manual. Portions of the text in this manual were developed from verbiage presented in the Knox County Stormwater Management Manual, the Georgia Stormwater Management Manual, the City of

Knoxville Land Development Manual, the City of Knoxville Best Management Practices Manual and the Nashville Stormwater Management Manual, suitably modified to meet northeast Tennessee's stormwater management objectives. This paragraph serves as an acknowledgement of the use of text from these manuals, and shall be considered as a general reference to these sources of information. In general, references to these sources are not made individually in all the chapters of this manual.

Background and Purpose

The local jurisdiction's Stormwater Management Ordinance establishes the legal framework for reviewing development and redevelopment for stormwater management, specifically, water quality best management practices that are required as part of the National Pollutant Discharge Elimination System (NPDES). The current local ordinances that regulate water quantity and development in floodplains are still in effect. The regulations, policies and technical guidelines provided in the Stormwater Management Manual have been developed to assist in the implementation of the regulatory program established by the Stormwater Management Ordinance.

How to Use This Manual

The chapter listing below provides a guide to the various chapters of this manual.

- Chapter 1 The Need for Stormwater Quality Management. Chapter 1 provides a brief discussion of the need for comprehensive stormwater management and an overview of the minimum stormwater management standards.
- Chapter 2 General Guidance. Chapter 2 provides an overview of hydrologic methods and procedures that must be used for the design of stormwater management systems. The information presented is intended to provide the design engineer with guidance to the methods and procedures, their data requirements and their applicability and limitations.
- Chapter 3 Stormwater Quality Standards. Chapter 3 focuses on water quality design criteria and the associated policies that must be followed for stormwater management systems.
- Chapter 4 Design and Maintenance of Structural BMPs. Chapter 4 provides an overview of structural stormwater BMPs that are considered acceptable for use in northeast Tennessee.
- Chapter 5 Better Site Design Methods. Chapter 5 provides information and design criteria for the water quality volume credits that are available to developers, and gives detailed information on the use of better site design practices that can be implemented to reduce stormwater runoff volumes and design requirements.
- **Chapter 6 Water Qualtiy Buffers.** Chapter 6 discusses the regulations, policies and other guidance for water quality buffers.

- **Chapter 7 BMP Maintenance.** Chapter 7 provides general information on inspection and maintenance requirements for stormwater BMPs.
- **Appendices.** The appendices provide definitions, associated ordinances and contact information for relevant agencies, as well as checklists for plan submittal and construction inspection. A sample BMP Operations and Maintenance Agreement is also provided.

Scope

The provisions of this manual shall replace any previous stormwater management guidance for water quality and shall apply to all surface alteration and construction.

Language Rules

The following rules shall apply to the text of this manual:

- 1. The particular shall control the general.
- 2. In the case of any difference in meaning or implication between the text of these regulations and the text of the Stormwater Management Ordinance, the text of the ordinance shall control.
- 3. The words "shall" and "should" are always mandatory and not discretionary. The word "may" is permissive.
- 4. The word "permitted" or words "permitted as of right" mean permitted without meeting the requirements of these regulations.
- 5. Words used in the present tense include future tense. The singular includes the plural, unless the context clearly indicates the contrary.
- 6. All public officials, bodies and agencies to which reference is made are those of local jurisdiction, unless otherwise indicated.
- 7. The term "City" shall mean the local jurisdiction with permitting authority.
- 8. The term "Director" shall mean the City Engineer or designee of the local jurisdiction.
- 9. Reference to "the ordinance" is to the local Stormwater Management Ordinance unless otherwise specified. This ordinance is included as a part of these regulations in Appendix A.
- 10. Unless specifically or otherwise noted, the term "development" shall include "redevelopment" as defined in the ordinance. In general, redevelopment shall be required to follow the same stormwater management requirements as new developments.

In general, all words used in these regulations shall have their common dictionary definitions. Definitions for certain specific terms as applied to these regulations may be found in the ordinance.

Legal Considerations

Caveat

This manual neither replaces the need for professional engineering judgment nor precludes the use of information not presented in this manual. The user assumes full responsibility for determining the appropriateness of applying the information presented herein. Careful consideration should be given to site-specific conditions, project requirements and engineering experience to ensure that criteria and procedures are properly applied and adapted.

Responsibility

Conformance with the Stormwater Management Ordinance is a minimum requirement and does not relieve the property owner, utility, facility operator, lessee, tenant, contractor, permittee, the equipment operator and/or any other person or entity doing work from applying sound judgment and taking measures which go beyond the scope of the requirements of this ordinance where necessary. Nor does this ordinance imply a warranty or the assumption of responsibility on the part of the local jurisdiction for the suitability, fitness or safety of any structure with respect to flooding, water quality or structural integrity. These regulations are a regulatory instrument only, and are not to be interpreted as an undertaking by the local jurisdiction to design any structure or facility.

Severability

Each separate provision of these regulations is deemed independent of all other provisions herein so that if any provision or provisions of the ordinance shall be declared invalid, all other provisions thereof shall remain enforceable.

Compatibility

If any provisions of these regulations and any other provisions of law impose overlapping or contradictory regulations, or contain any restrictions covering any of the same subject matter the provision that is more restrictive or imposes higher standards or requirements shall govern. These regulations do not relieve the applicant from provisions of any other applicable codes, ordinances, or regulations that are not explicitly repealed by these regulations.

Saving Provision

These regulations do not abate any action now pending under prior existing regulations unless as expressly provided herein.

Table of Contents

CHAPTER 1 — The Need for Stormwater Quality Management

1.1	Impac	cts of Development and Stormwater Runoff	1-1
	1.1.1	Development Changes Land and Runoff	. 1-1
	1.1.2	Changes to Stream Flow	. 1-2
	1.1.3	Changes to Stream Geometry	.1-3
		Impacts to Aquatic Habitat	
		Water Quality Impacts	
		Stormwater Hotspots	
	1.1.7	Effects on Basins, Lakes and Reservoirs	. 1-7
1.2	Addre	essing Stormwater Impacts	1-7
1.3	Comp	prehensive Stormwater Management Planning	1-7
14	Storm	water Quality Treatment Rationale	1-9
1.7		Regulatory Overview	
		Attaining the Water Quality Standard1	
1.5	Refer	ences 1	-13
1.6	Sugge	ested Reading1	-13

Chapter 1 - List of Figures

FIGURE #	TITLE	Page #
Figure 1-1	Runoff Hydrograph under Pre-and Post-Development Conditions	1-2
Figure 1-2	Example of Significant Streambank Erosion	1-3
Figure 1-3	Physical Stream Changes Due to Watershed Development	1-4
Figure 1-4	Stormwater Management Planning Process	1-9
Figure 1-5	Northeast Tennessee 85 th Percentile Rainfall Analysis	1-12

Chapter 1 - List of Tables

TABLE #	TITLE	Page #
Table 1-1	Major Stormwater Pollutants and Their Potential Effects	1-5

THE NEED FOR STORMWATER QUALITY MANAGEMENT

1.1 Impacts of Development and Stormwater Runoff

Land development changes not only the physical, but also the chemical and biological conditions of Tennessee's streams. This chapter describes the changes that occur due to development and the resulting stormwater runoff impacts.

1.1.1 Development Changes Land and Runoff

When land is developed, the hydrology, or the natural cycle of water is disrupted and altered. Clearing removes the vegetation that intercepts, slows and returns rainfall to the air through evaporation and transpiration. Grading flattens hilly terrain and fills in natural depressions that slow and provide temporary storage of stormwater runoff. The topsoil and sponge-like layers of decaying leaves and other organic materials are scraped and removed and the remaining subsoil is compacted. Rainfall that once soaked into the ground now runs off the surface. The addition of buildings, roadways, parking lots and other surfaces that are impervious to rainfall further reduces infiltration and increases runoff.

Depending on the magnitude of changes to the land surface, the total runoff volume can increase dramatically. These changes not only increase the total volume of runoff, but also accelerate the rate at which runoff flows across the land. This effect is further exacerbated by drainage systems such as gutters, storm sewers and lined channels that are designed to quickly carry runoff to rivers and streams.

Development and impervious surfaces also reduce the amount of water that infiltrates into the soil and groundwater, thus reducing the amount of water that can recharge aquifers and feed streamflow during periods of dry weather.

Finally, development and urbanization affect not only the quantity of stormwater runoff, but also its quality. Development increases both the concentration and types of pollutants carried by runoff. As it runs over rooftops and lawns, parking lots and industrial sites, stormwater picks up and transports a variety of contaminants and pollutants to downstream waterbodies. The loss of the original topsoil and vegetation removes a valuable filtering mechanism for stormwater runoff.

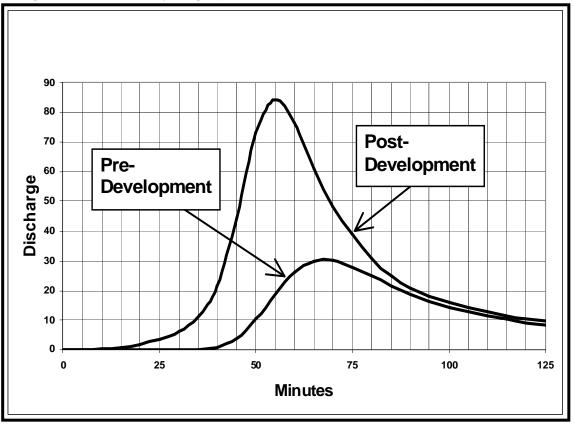
The cumulative impact of development and urban activities, and the resultant changes to both stormwater quantity and quality in the entire land area that drains to a stream, river, lake or estuary determines the conditions of the waterbody. This land area that drains to the waterbody is known as its *watershed*. Urban development within a watershed has a number of direct impacts on downstream waters and waterways. These impacts include:

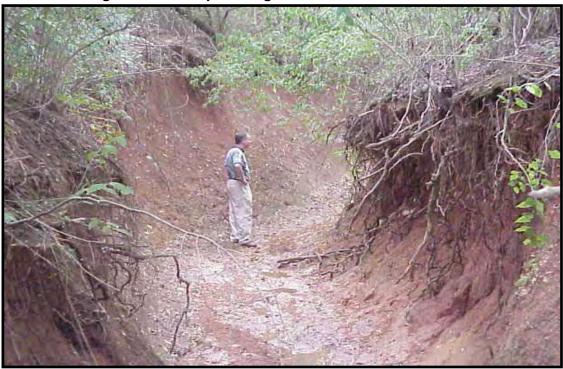
- Changes to stream flow;
- Changes to stream geometry;
- Degradation of aquatic habitat; and,
- Water quality impacts.

1.1.2 Changes to Stream Flow

Urban development alters the hydrology of watersheds and streams by disrupting the natural water cycle. This results in:

- <u>Increased Runoff Volumes</u> Land surface changes can dramatically increase the total volume of runoff generated in a developed watershed.
- <u>Increased Peak Runoff Discharges</u> Increased peak discharges for a developed watershed can be two to five times higher than those for a watershed prior to development. This is depicted in Figure 1-1.
- <u>Greater Runoff Velocities</u> Impervious surfaces and compacted soils, as well as improvements to the drainage system such as storm drains, pipes and ditches, increase the speed at which rainfall runs off land surfaces within a watershed.
- <u>Timing</u> As runoff velocities increase, it takes less time for water to run off the land and reach a stream or other waterbody.
- Increased Frequency of Bankfull and Near Bankfull Events Increased runoff volumes and peak flows increase the frequency and duration of smaller bankfull and near bankfull events which are the primary channel forming events.
- <u>Increased Flooding</u> Increased runoff volumes and peaks also increase the frequency, duration and severity of out-of-bank flooding.
- <u>Lower Dry Weather Flows (Baseflow)</u> Reduced infiltration of stormwater runoff causes streams to have less baseflow during dry weather periods and reduces the amount of rainfall recharging groundwater aquifers.




Figure 1-1. Runoff Hydrograph under Pre-and Post-Development Conditions

1.1.3 Changes to Stream Geometry

The changes in the rates and amounts of runoff from developed watersheds directly affect the morphology, or physical shape and character, of Tennessee's creeks and streams. This is depicted graphically in Figure 1-3. Some of the impacts due to urban development include:

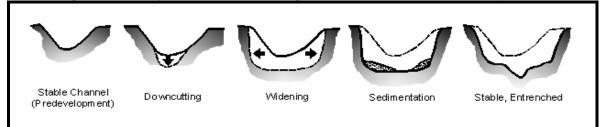

- <u>Stream Widening and Bank Erosion</u> Stream channels widen to accommodate and convey the increased runoff and higher stream flows from developed areas. More frequent small and moderate runoff events undercut and scour the lower parts of the streambank, causing the steeper banks to slump and collapse during larger storms. Higher flow velocities further increase streambank erosion rates. A stream can widen many times its original size due to post-development runoff. The photo in Figure 1-2 shows a good example of bank erosion.
- <u>Stream Downcutting</u> Another way that streams accommodate higher flows is by downcutting their streambed. This causes instability in the stream profile, or elevation along a stream's flow path, which increases velocity and triggers further channel erosion both upstream and downstream.
- <u>Loss of Riparian Tree Canopy</u> As streambanks are gradually undercut and slump into the channel, the trees that had protected the banks are exposed at the roots. This leaves them more likely to be uprooted during major storms, further weakening the bank structure.
- <u>Changes in the Channel Bed Due to Sedimentation</u> Due to channel erosion and other sources upstream, sediments are deposited in the stream as sandbars and other features, covering the channel bed, or substrate, with shifting deposits of mud, silt and sand.
- Increase in the Floodplain Elevation To accommodate the higher peak flow rate, a stream's floodplain elevation typically increases following development in a watershed due to higher peak flows. This problem is compounded by building and filling in floodplain areas, which cause flood heights to rise even further. Property and structures that had not previously been subject to flooding may now be at risk.

Figure 1-2. Example of Significant Streambank Erosion

Figure 1-3. Physical Stream Changes Due to Watershed Development

1.1.4 Impacts to Aquatic Habitat

Along with changes in stream hydrology and morphology, the habitat value of streams diminishes due to development in a watershed. Impacts on habitat include:

- <u>Degradation of Habitat Structure</u> Higher and faster flows due to development can scour channels and wash away entire biological communities. Streambank erosion and the loss of riparian vegetation reduce habitat for many fish species and other aquatic life, while sediment deposits can smother bottom-dwelling organisms and aquatic habitat.
- <u>Loss of Pool-Riffle Structure</u> Streams draining undeveloped watersheds often contain pools of deeper, more slowly flowing water that alternate with "riffles" or shoals of shallower, faster flowing water. These pools and riffles provide valuable habitat for fish and aquatic insects. As a result of the increased flows and sediment loads from urban watersheds, the pools and riffles disappear and are replaced with more uniform, and often shallower, streambeds that provide less varied aquatic habitat.
- <u>Decline of Abundance and Biodiversity</u> When there is a reduction in various habitats and habitat quality, both the number and the variety, or diversity, of organisms (wetland plants, fish, macroinvertebrates, etc.) are also reduced. Sensitive fish species and other life forms disappear and are replaced by those organisms that are better adapted to the poorer conditions. The diversity and composition of the benthic, or streambed, community have frequently been used to evaluate the quality of urban streams. Aquatic insects are a useful environmental indicator as they form the base of the stream food chain.

Fish and other aquatic organisms are impacted not only by the habitat changes brought on by increased stormwater runoff quantity, but are often also adversely affected by water quality changes due to development and resultant land use activities in a watershed.

1.1.5 Water Quality Impacts

Nonpoint source pollution, which is the primary cause of polluted stormwater runoff and water quality impairment, comes from many diffuse or scattered sources, many of which are the result of human activities within a watershed. Development concentrates and increases the amount of these nonpoint source pollutants. As stormwater runoff moves across the land surface, it picks up and carries away both natural and human-made pollutants, depositing them into streams, rivers, lakes, wetlands, and groundwater. Nonpoint source pollution is the leading source of water quality degradation in northeast Tennessee. According to the State of Tennessee's list of impaired waters, sediment and habitat alteration are considered two major pollutants for streams in northeast Tennessee.

Water quality degradation in urbanizing watersheds starts when development begins. Erosion from construction sites and other disturbed areas contribute large amounts of sediment to streams. As construction and development proceed, impervious surfaces replace the natural land cover and pollutants from human activities begin to accumulate on these surfaces. During storm events, these pollutants are then washed off into the streams. Stormwater also causes discharges from sewer overflows and leaching from septic tanks. There are a number of other causes of nonpoint

source pollution in urban areas that are not specifically related to wet weather events including leaking sewer pipes, sanitary sewage spills, and illicit discharge of commercial/industrial wastewater and wash waters to storm drains.

Due to the magnitude of the problem it is important to understand the nature and sources of urban stormwater pollution. Table 1-1 summarizes the major stormwater pollutants and their effects. Some of the most frequently occurring pollution impacts to urban streams and their sources are:

<u>Reduced Oxygen in Streams</u> – The decomposition process of organic matter uses up dissolved oxygen (DO) in the water, which is essential to fish and other aquatic life. As organic matter is washed off by stormwater, dissolved oxygen levels in receiving waters can be rapidly depleted. If the DO deficit is severe enough, fish kills may occur and stream life can weaken and die. In addition, oxygen depletion can affect the release of toxic chemicals and nutrients from sediments deposited in a waterway.

All forms of organic matter in urban stormwater runoff such as leaves, grass clippings and pet waste contribute to the problem. In addition, there are a number of non-stormwater discharges of organic matter to surface waters such as sanitary sewer leakage and septic tank leaching.

 <u>Microbial Contamination</u> – The level of bacteria, viruses and other microbes found in urban stormwater runoff often exceeds public health standards for water contact recreation such as swimming and wading. Microbes can also contaminate shellfish beds, preventing their harvesting and consumption, as well as increasing the cost of treating drinking water. The main sources of these contaminants are sewer overflows, septic tanks, pet waste, and urban wildlife such as pigeons, waterfowl, squirrels, and raccoons.

Constituents	Effects
Sediments - Suspended Solids, Dissolved Solids, Turbidity	Stream turbidity Habitat changes Recreation/aesthetic loss Contaminant transport Filling of lakes and reservoirs
Nutrients - Nitrate, Nitrite, Ammonia, Organic Nitrogen, Phosphate, Total Phosphorus	Algae blooms Eutrophication Ammonia and nitrate toxicity Recreation/aesthetic loss
Microbes - Fecal Coliforms, Fecal Streptococci, Viruses, E.Coli, Enterocci	Ear/intestinal infections Shellfish toxicity Recreation/aesthetic loss
Organic Matter - Vegetation, Sewage, Other Oxygen Demanding Materials	Dissolved oxygen depletion Odors Fish kills
Toxic Pollutants - Heavy Metals (cadmium, copper, lead, zinc), Organics, Hydrocarbons, Pesticides/Herbicides	Human & aquatic toxicity Bioaccumulation in the food chain
Thermal Pollution	Dissolved oxygen depletion Habitat changes
Trash and debris	Recreation/aesthetic loss

Table 1-1. Major Stormwater Pollutants and Their Potential Effects

- <u>Nutrient Enrichment</u> Runoff from urban watersheds contains increased nutrients such as nitrogen or phosphorus compounds. Increased nutrient levels are a problem as they promote weed and algae growth in lakes, streams and estuaries. Algae blooms block sunlight from reaching underwater grasses and deplete oxygen in bottom waters. In addition, nitrification of ammonia by microorganisms can consume dissolved oxygen, while nitrates can contaminate groundwater supplies. Sources of nutrients in the urban environment include washoff of fertilizers and vegetative litter, animal wastes, sewer overflows and leaks, septic tank seepage, detergents, and the dry and wet fallout of materials in the atmosphere.
- <u>Hydrocarbons</u> Oils, greases and gasoline contain a wide array of hydrocarbon compounds, some of which have shown to be carcinogenic, tumorigenic and mutagenic in certain species of fish. In addition, in large quantities, oil can impact drinking water supplies and affect recreational use of waters. Oils and other hydrocarbons are washed off roads and parking lots, primarily due to leakage from vehicle engines. Other sources include the improper disposal of motor oil in storm drains and streams, spills at fueling stations and restaurant grease traps.
- <u>Toxic Materials</u> Besides oils and greases, urban stormwater runoff can contain a wide variety
 of other toxicants and compounds including heavy metals such as lead, zinc, copper, and
 cadmium, and organic pollutants such as pesticides, PCBs, and phenols. These contaminants
 are of concern because they are toxic to aquatic organisms and can bioaccumulate in the food
 chain. In addition, they also impair drinking water sources and human health. Many of these
 toxicants accumulate in the sediments of streams and lakes. Sources of these contaminants
 include industrial and commercial sites, urban surfaces such as rooftops and painted areas,
 vehicles and other machinery, improperly disposed household chemicals, landfills, hazardous
 waste sites and atmospheric deposition.
- <u>Sedimentation</u> Eroded soils are a common component of urban stormwater and a pollutant in their own right. Excessive sediment can be detrimental to aquatic life by interfering with photosynthesis, respiration, growth and reproduction. Sediment particles transport other pollutants that are attached to their surfaces including nutrients, trace metals and hydrocarbons. High turbidity due to sediment increases the cost of treating drinking water and reduces the value of surface waters for industrial and recreational use. Sediment also fills ditches and small streams and clogs storm sewers and pipes, causing flooding and property damage. Sedimentation can reduce the capacity of reservoirs and lakes, block navigation channels, fill harbors and silt estuaries. Erosion from construction sites, exposed soils, street runoff, and streambank erosion are the primary sources of sediment in urban runoff.
- <u>Higher Water Temperatures</u> As runoff flows over impervious surfaces such as asphalt and concrete, it increases in temperature before reaching a stream or basin. Water temperatures are also increased due to shallow basins and impoundments along a watercourse as well as fewer trees along streams to shade the water. Since warm water can hold less dissolved oxygen than cold water, this "thermal pollution" further reduces oxygen levels in urban streams. Temperature changes can severely disrupt certain aquatic species, such as trout and stoneflies, which can survive only within a narrow temperature range.
- <u>Trash and Debris</u> Considerable quantities of trash and other debris are washed through storm drain systems and into streams and lakes. The primary impact is the creation of an aesthetic "eyesore" in waterways and a reduction in recreational value. In smaller streams, debris can cause blockage of the channel, which can result in localized flooding and erosion.

1.1.6 Stormwater Hotspots

Stormwater hotspots are areas of the urban landscape that often produce higher concentrations of certain pollutants, such as hydrocarbons or heavy metals, than are normally found in urban runoff. These areas merit special management and the use of specific pollution prevention activities and/or structural stormwater controls. The city has the authority to require additional measures for developments and redevelopments that propose such hotspot land uses. Examples of stormwater hotspots include, but are not limited to:

- Gas/fueling stations
- Vehicle maintenance areas
- Vehicle washing / steam cleaning
- Auto recycling facilities
- Outdoor material storage areas
- Plant nurseries, agricultural areas

1.1.7 Effects on Basins, Lakes and Reservoirs

- Kennels, feed lots, etc.
- Loading and transfer areas
- Landfills
- Construction sites
- Industrial sites
- Industrial rooftops

Stormwater runoff into basins, lakes and reservoirs can have some unique negative effects. A notable impact of urban runoff is the filling in of lakes with sediment. Another significant water quality impact on lakes related to stormwater runoff is nutrient enrichment. This can result in the undesirable growth of algae and aquatic plants. Enclosed or regulated waterbodies such as basins, lakes and reservoirs do not flush contaminants as quickly as streams and act as sinks for nutrients, metals and sediments. This means that lakes can take longer to recover if contaminated.

1.2 Addressing Stormwater Impacts

The focus of the City of Kingsport is effective and comprehensive stormwater management. Stormwater management involves both the prevention and mitigation of stormwater runoff quantity and quality impacts as described in this chapter through a variety of methods and mechanisms.

This manual provides requirements, policies, and guidance for developers in the city to effectively implement stormwater management controls on-site to address the potential impacts of new development and redevelopment, and both prevent and mitigate problems associated with stormwater runoff. This is accomplished by:

- Developing land in a way that minimizes its impact on a watershed by reducing both the amount of runoff and the pollutants generated;
- Using the most current and effective erosion and sedimentation control practices during the *construction* phase of development;
- Controlling stormwater runoff peaks, volumes and velocities to prevent both downstream streambank channel erosion and flooding;
- Treating post-construction stormwater runoff before it is discharged to a waterway, and
- Implementing pollution prevention practices to prevent stormwater from becoming contaminated in the first place.

The remainder of Chapter 1 outlines the minimum stormwater management standards that are used to guide the requirements, policies and incentives of the city in establishing an effective stormwater management program.

1.3 Comprehensive Stormwater Management Planning

This section presents a comprehensive and integrated set of stormwater management standards for new development and redevelopment projects in the city. Minimum standards and performance requirements for controlling runoff from development are critical to addressing both the water quantity and quality impacts of post-construction urban stormwater and are required of the City of Kingsport in order to comply with the National Pollutant Discharge Elimination System (NPDES) stormwater regulations. Minimum stormwater management standards must also be supported by a set of design and management tools and an integrated design approach for implementing both structural and nonstructural stormwater controls. The major elements of the stormwater management program are:

- Incentives for Stormwater Better Site Design The first step in addressing stormwater management begins with the site planning and design process. The goals of better site development design are to reduce the amount of runoff and pollutants that are generated from a development site and provide for some nonstructural on-site treatment and control of runoff by implementing a combination of approaches collectively known as *stormwater better site design practices*. These include maximizing the protection of natural features and resources on a site, developing a site design that minimizes impact, reducing the overall site imperviousness, and utilizing natural systems for stormwater management. General guidance on the types and application of better site design practices is provided in Chapter 5 of this manual.
- <u>Stormwater Credits for Better Site Design</u> The city has developed a set of stormwater "credits" that can be used to provide developers and site designers' incentives to implement better site design practices that can reduce the volume of stormwater runoff and minimize the pollutant loads from a site. While reducing stormwater impacts, the credit system can also translate directly into cost savings to the developer by reducing the size of structural stormwater control and conveyance facilities. Specific technical guidance on the stormwater credits offered is presented in Chapter 5 of this manual.
- Integrated Stormwater Design Criteria The Integrated Stormwater Design (ISD) criteria is a combination of design criteria for stormwater quantity and quality management which addresses the entire range of hydrologic events. These criteria allow the site engineer to calculate the stormwater control volumes required for water quality, downstream channel protection, and overbank and extreme flood protection. Specific technical guidance on stormwater design criteria is presented in Chapter 3 of this manual.
- <u>Downstream Impact Analysis</u> Downstream peak discharge analyses are required to ensure that a proposed development is not adversely impacting downstream properties after the onsite stormwater management requirements have been addressed. These analyses can potentially be used to modify the requirement for overbank and extreme flood control, should the analysis reveal that such stormwater control measures would cause a negative flood impact on downstream properties. Downstream impact analysis requirements are presented in the Chapter 3 of this manual.
- <u>Guidance on Structural Stormwater Controls</u> This manual provides requirements and specifications for a set of structural stormwater controls that can be used to meet the city's stormwater management water quantity and quality goals. Specific technical guidance on how to select, size, design, construct and maintain structural controls is provided in Chapter 4 of this manual.
- <u>Stormwater Management Plan</u> The City of Kingsport requires the preparation of a stormwater management plan for development and redevelopment activities. The plan must be approved by the municipality prior to obtaining a grading or building permit. The purpose, requirements, and contents for this plan are discussed in Chapter 2 of this manual.

Figure 1-4 illustrates how these design tools can be utilized in the development process to address stormwater management in northeast Tennessee.

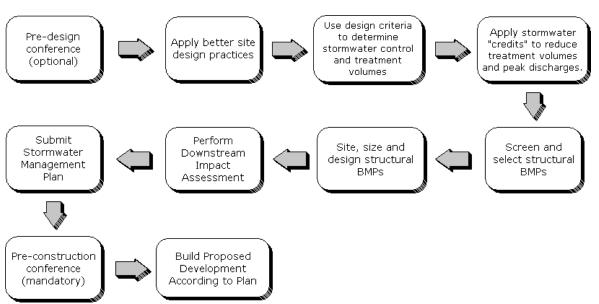


Figure 1-4. Stormwater Management Planning Process

1.4 Stormwater Quality Treatment Rationale

This section provides an explanation of the requirement for 80% removal of total suspended solids (TSS) from post-construction stormwater runoff for the 85th percentile storm event, as measured on an average annual basis.

1.4.1 Regulatory Overview

The NPDES Phase II regulation requires that Phase II regulated communities develop, implement, and enforce a stormwater management program that reduces the discharge of pollutants from the regulated jurisdiction "to the maximum extent practicable (MEP)". MEP is a technology-based discharge standard that was designed for the reduction of pollutant discharges and established in the Clean Water Act. Using guidance provided by the Environmental Protection Agency (EPA), the City can achieve the MEP standard by instituting a stormwater management program that implements and requires best management practices (BMPs) that are designed to protect water quality. No further guidance on MEP is provided by the EPA or by the Tennessee Department of Environment and Conservation (TDEC).

Control measure 5 of the National Pollutant Discharge Elimination System (NPDES) Phase II Permit presents the requirements for the control of post-construction (i.e., after development) stormwater runoff. Quoting directly from the NPDES Permit for the State of Tennessee, regulated cities and counties must:

"Develop, implement, and enforce a program to address storm water runoff from new development and redevelopment projects that disturb greater than or equal to one acre, including projects less than one acre that are part of a larger common plan of development or sale, that discharge into your small MS4. Your program must ensure that controls are in place that would prevent or minimize water quality impacts;

Develop and implement strategies which include a combination of structural and/or non-structural best management practices appropriate for your community; and

Develop and implement a set of requirements to establish, protect and maintain water quality buffers in areas of new development and redevelopment.

Use an ordinance or other regulatory mechanism to address post-construction runoff from new development and redevelopment projects to the extent allowable under State or local law."

As a result of these requirements, the city must implement a requirement for new developments and redevelopments to control stormwater quality using both structural (i.e., constructed) and non-structural (i.e., site planning) best management practices (BMPs). This requirement must be fully implemented no later than 2008.

The NPDES Phase II regulation also requires that the city focus stormwater management on controlling discharges of pollutants of concern to local impaired streams. Based on the State of Tennessee's 303(d) list of "impaired" streams, one of the largest pollutants in northeast Tennessee is sedimentation. In 2006, over 300 stream miles were considered impaired due to excessive sedimentation.

1.4.2 Attaining the Water Quality Standard

The basic goal of the NPDES Phase II regulation is to reduce the water quality impacts of development. The preferred approach to meet this goal and comply with the NPDES permit is called the "Water Quality Volume method" or "WQv method". The WQv method is based on a minimum water quality control goal of 80% removal TSS, as measured on an average annual basis, from post-construction stormwater runoff (i.e., after construction of a site is completed. TSS is a commonly used representative stormwater pollutant for measuring sedimentation.

There are a number of factors that support the use of an 80% TSS removal standard as a minimum level water quality goal in northeast Tennessee.

- 1. The Tennessee 303(d) list indicates that sedimentation (i.e., sediment) is a significant pollutant of concern in local streams. This fact alone requires implementation of a stormwater management program that, at least in part, focuses on the removal of sediment from stormwater discharges in order to achieve compliance with the NPDES Phase II regulations to the maximum extent practicable.
- 2. The use of TSS as an "indicator" pollutant for sediment is well-established.
- The control of TSS leads to indirect control of other pollutants of concern that can adhere to suspended solids in stormwater runoff. In fact, some research shows that a large fraction of many other pollutants of concern are either reduced along with TSS, or at rates proportional to the TSS reduction.
- 4. A treatment standard of 80% is not a numeric standard, but a "best available technology" standard. In other words, the 80% TSS removal level is reasonably attainable using properly designed, constructed and maintained structural stormwater BMPs (for typical ranges of TSS concentration found in stormwater runoff). This standard is supported with research data from numerous research projects and compiled by the International Stormwater Best Management Practices (BMP) Database evaluation project, titled Determining Urban Stormwater Best Management Practices Removal Efficiencies, June, 2000.

The WQv method can meet the goal of 80% TSS removal using a two-pronged approach. First, it encourages the reduction of imperviousness (and therefore pollution) from developed sites through incentives for non-structural BMPs, such as natural conservation areas and water quality buffers. Second, it requires treatment of any remaining stormwater runoff with structural controls. This method allows the city to meet its water quality goals and regulatory requirements, yet still allows developers flexibility in their site designs.

There are a number of advantages with the WQv method:

- The WQv method provides a measure of flexibility in site design. The new development or redevelopment site will be required to meet the 80% reduction goal using one or more of a number of locally-acceptable structural BMPs;
- If desired, the developer can also utilize non-structural controls to reduce imperviousness. The WQv method will provide incentives for the reduction of impervious surfaces and the use of non-structural BMPs, such as buffers, natural space preservation, and impervious area disconnection. When utilized, these practices will reduce the amount of stormwater runoff that will require treatment by structural practices, thereby reducing the structural BMP maintenance burden;
- WQv is not a prescriptive approach in that it mandates the use of one specific treatment BMP, such as a first flush pond. Instead, the developer can choose from a menu of BMPs, each of which is assigned a % TSS removal efficiency. When constructed alone, or in combination with other structural and/or non-structural BMPs, the minimum percent TSS removal standard can be attained;
- Research shows that extended release "first flush" ponds, which are often called dry extended detention (ED) basins and are commonly used in northeast Tennessee, cannot attain a TSS removal standard of 80%. Such ponds have a high propensity for sediment resuspension and subsequent discharges, especially during large storm events. Recent studies of the BMP give it an average TSS reduction somewhere between 50% and 70% (Schueler and Holland, 2000). Of course, pollutant removal ability does depend upon geographic location, overall sediment characteristics, hydrology, and storm event size;
- WQv is a performance based approach. If the BMP(s) are designed, constructed and maintained in accordance with guidance and requirements set by the city, then the BMP(s) will be considered "in compliance" with the minimum 80% water quality standard; and
- The WQv method allows a consistent, "apples-to-apples" application of water quality treatment practices on every development site. Each site will be required to design, construct and maintain in accordance with the 80% TSS removal goal.

The WQv is calculated for the 85th percentile storm event using a value of 1.04 inches of rainfall. Thus, a stormwater management system designed for the WQv will treat the runoff from all storm events of 1.04 inches or less, as well as the first 1.04 inches of runoff for all larger storm events. The 85th percentile was chosen because it represents the "knee in the curve" volume that captures a significant number of storms (normally in the 80-90% range of all storms) without attempting to treat the small percentage of much larger storms that result in large volumes of runoff. Such storms would be expensive to treat, are rare in occurrence, and typically diluted in pollution concentration. Figure 1-5 presents a graphical representation of how the 85th percentile rainfall depth was determined, using a "knee-in-the-curve" approach. The value of 1.04 inches for the 85th percentile storm was determined for the city based on analysis of rainfall data collected at the TriCities Airport dating back to 1948.

Detailed information on the calculation of the WQv and % TSS removal for a development or redevelopment site are presented in Chapter 3 of this manual.

It is important to note that the city is not alone in implementing an 80% TSS removal standard, or the WQv method. Many states, including Maryland, Massachusetts, North Carolina, Georgia, and Florida have set similar statewide TSS goals and have research data to support BMPs meeting this reduction goal. Further, a number of communities in Tennessee, the State of Georgia and the Commonwealth of Virginia have implemented a WQv type of method as the statewide water quality control approach. The BMP design and maintenance guidance from these states can be used and modeled as appropriate to implement a water quality control program that is appropriate to meet the city's needs.

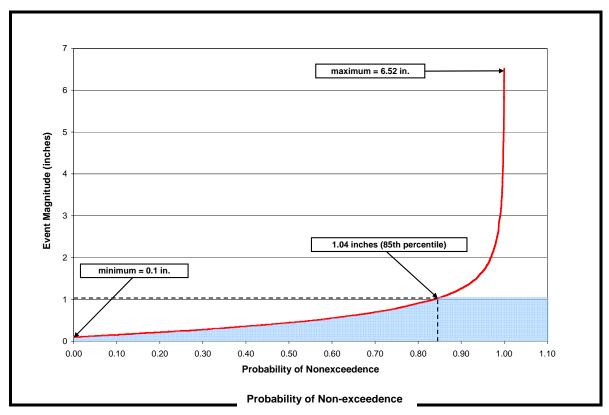


Figure 1-5: Northeast Tennessee 85th Percentile Rainfall Analysis

1.5 References

ARC. Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.

GeoSyntec Consultants, URS, et al. *Determining Urban Stormwater Best Management Practices Removal Efficiencies*. June, 2000.

Schueler T., and Holland, H. *The Practice of Watershed Protection*. Center for Watershed Protection (CWP), 2000.

1.6 Suggested Reading

North Carolina Department of Environment and Natural Resources, *Stormwater Management Site Planning*. 1998

This page left intentionally blank

Table of Contents

CHAPTER 2 — Regulatory and Planning Guidance

2.1	Introduction2-1	1
2.2	Applicable Regulations2-12.2.1Local Regulations2-22.2.2Tennessee Construction General Permit2-12.2.3Aquatic Resource Alteration Permit (ARAP)2-12.2.4Section 404 (Wetlands) Permit.2-22.2.526a Permits for Shoreline Construction2-22.2.6Section 9 and 10 Permits for Navigable Waters2-22.2.7Endangered Species Act2-22.2.8State/Federal Water Quality Regulations2-22.2.8.1NPDES MS4 (Phase II) Permit2-32.2.8.2Total Maximum Daily Load Program2-3	1122223
2.3	Stormwater Management Plans2-32.3.1 General Policies2-32.3.2 Endangered Species Act Review2-42.3.3 Special Pollution Abatement Plans2-52.3.4 Pre-Design Conference2-6	3 4 5
2.4	Bonds2-7	7
2.5	As-Builts2-&	3
2.6	References)

Chapter 2 - List of Tables

TABLE #	TITLE	Page #
Table 2-1	Target Pollutant for SPAP Land Uses	2-6

This page left intentionally blank

REGULATORY AND PLANNING GUIDANCE

2.1 Introduction

The purpose of this chapter is to provide general information on the site planning process and relevant regulations and plans. This chapter contains general information with regards to the roles and requirements of the local jurisdiction and other agencies that have a role in the development process. The reader is referred to the local jurisdiction or agency of interest for detailed information on development process and procedures.

2.2 Applicable Regulations

2.2.1 Local Regulations

The policies, criteria and guidance provided in this manual are applicable only to stormwater quality management. This manual does not provide information with regards to land use planning, zoning, subdivision development, grading, erosion prevention and sediment control, stormwater drainage and detention (i.e., peak discharge) and infrastructure/building construction. Applicants submitting a stormwater management plan must also refer to, and comply with, the city's relevant ordinances, permits and regulatory mechanisms for regulations and policies that are not included in this manual. Such regulations may include, but are not limited to, zoning ordinances, land disturbing permits and ordinances that regulate drainage and stormwater quantity.

This manual is not intended to repeal, abrogate, or impair any existing ordinances and regulations. However, where the policies in this manual and another regulation conflict or overlap, that provision which is more restrictive or imposes higher standards or requirements shall prevail.

2.2.2 Tennessee Construction General Permit

The State of Tennessee General NPDES Permit for Discharges of Stormwater Associated with Construction Activities is henceforth referred to as the "Construction General Permit" (TNCGP). Applicable to all areas of the State of Tennessee, the TNCGP is intended to regulate the pollution prevention and the control of wastes <u>during</u> construction activities, whereas the stormwater management plan is intended to regulate the control of pollution <u>after</u> construction is completed. Specific to site developments, the TNCGP emphasizes the application of best management practices for purposes of erosion prevention and sediment control and the control of other construction related materials and wastes. The TNCGP is administered by the Tennessee Department of Environment and Conservation (TDEC).

2.2.3 Aquatic Resource Alteration Permit

Persons who conduct any activity that involves construction within, and potentially the alteration of, waters of the State must obtain a State Aquatic Resource Alteration Permit (ARAP), and possibly a Federal Section 401 Certification. ARAPs and 401 Certifications are administered by TDEC. The Section 401 Certification is required for projects involving the discharge of dredged or fill material into waters of the United States (US), or wetlands. An ARAP is required for any alteration of State waters, including wetlands that do not require a federal permit.

2.2.4 Section 404 (Wetlands) Permit

Section 404 of the Clean Water Act establishes a program to regulate the discharge of dredged and fill material into waters of the United States, including wetlands. Activities in waters of the United States that are regulated under this program include fills for development, water resource projects (such as dams and levees), infrastructure development (such as highways and airports), and conversion of wetlands to uplands for farming and forestry. The US Army Corps of Engineers administers the 404 permit program. The program governs such activities on all surface waters, such as inland waters, lakes, rivers, streams and their tributaries; interstate waters and their tributaries; wetlands adjacent to the above (e.g., swamps, marshes, bogs, or other land areas); and isolated wetlands and lakes, intermittent streams, and other waters where degradation could affect interstate commerce. Section 404 permits (and possibly Section 10 permits) are required for stormwater activities that may impact natural wetlands.

2.2.5 26a Permits for Shoreline Construction

The Tennessee Valley Authority (TVA) administers a permit program that governs shoreline construction along, across, or in the Tennessee River or any of its tributaries. Thus, TVA's jurisdiction for the 26a permit extends to the limits of the Tennessee River watershed. In accordance with TVA requirements, the permit applied to construction in the 500-year floodplain or to the upper limits of TVA flowage rights, whichever is higher, for developments located along regulated rivers (tailwaters) and TVA reservoirs (e.g., Fort Loudoun Lake). Along off-reservoir, unregulated streams and rivers, jurisdiction is typically applied to the limits of the 100-year floodplain. More information on the TVA 26a permit can be found at http://www.tva.gov.

2.2.6 Section 9 and 10 Permits for Navigable Waters

Sections 9 and 10 of the Rivers and Harbors Act of 1899 address the construction of bridges and other potential modifications or alterations of navigable waters of the United States. A Section 9 permit is required for construction of a bridge or other structure spanning navigable waters of the United States, without fill or dredging. The United States Coast Guard, as a part of the Department of Homeland Security, administers Section 9 permits. Section 10 permits are issued for fill, dredging, and other alterations of navigable waters. Section 10 permits are administered by the United States Army Corps of Engineers.

2.2.7 Endangered Species Act

The Federal Endangered Species Act (ESA) of 1973 protects plants and animals that are listed by the government as "endangered" or "threatened". The ESA makes it unlawful for any landowner to harm an endangered animal, or to significantly modify an endangered animal's habitat. This applies to both public and private lands. Stormwater management plan requirements that relate to endangered species are contained later in this chapter. More information on the Endangered Species Act can be gathered from the Tennessee Wildlife Resources Agency (<u>http://www.state.tn.us/twra</u>), or the United States Fish and Wildlife Service (<u>www.fws.gov</u>).

2.2.8 State/Federal Water Quality Regulations

There are two major, State-administered, regulatory programs that provide the basis for local jurisdictional stormwater quality regulations: the General Permit for Discharges from Small Municipal Separate Storm Sewer Systems (MS4s), henceforth called the MS4 Permit; and the Total Maximum Daily Load (TMDL). Both regulations are administered by TDEC. Local jurisdictions are responsible for the community's compliance with the MS4 Permit and TMDL, and therefore have imposed stormwater management regulations on new developments and redevelopments. Both State-administered regulations are discussed briefly below.

2.2.8.1 NPDES MS4 (Phase II) Permit

The MS4 Permit falls under the National Pollutant Discharge Elimination System (NPDES) program, and establishes guidelines for municipalities to minimize pollutants in stormwater runoff to the "maximum extent practicable." The MS4 permit is directly applicable to the local jurisdiction, which has the responsibility for maintaining local government compliance with the permit requirements. As a result, each local jurisdiction that must comply with the MS4 Permit has in turn imposed a similar set of regulations on developments and redevelopments, pertaining to non-stormwater (i.e., illicit) discharges and dumping, erosion prevention and sediment control (EPSC), and, most relevant to this manual, stormwater management. While a site developer or property owner has no direct responsibility with regards to compliance with the MS4 permit, it is important to understand that the conditions of the MS4 Permit do affect local stormwater management requirements during and after construction.

2.2.8.2 Total Maximum Daily Load Program

Under Section 303(d) of the Clean Water Act, the State of Tennessee is required to develop a list of impaired waters that do not meet water quality standards (i.e., the 303(d) list). TDEC must then establish priority rankings for waters on the list and develop TMDLs for listed waters. The TMDL specifies the maximum amount of a specific pollutant of concern that a designated segment of a water body can receive and still meet water quality standards. The TMDL also allocates pollutant loadings among point and non-point pollutant sources, including stormwater runoff. TMDLs have been issued for water bodies in northeast Tennessee, and more are anticipated.

The TMDL program has the potential for broad impact on the local stormwater management program and property development regulations because it requires that non-point sources of pollutants must be addressed at the local level. The program requires the development of a plan that may impose requirements or restrictions for specific local regulations or programs, and therefore it is important for persons that are planning new developments or redevelopments to be aware of TMDLs and where they are applicable. Adopted TMDL plans are available from TDEC or at TDEC's website (<u>http://www.state.tn.us/environment</u>). As well, local jurisdictions can provide information on any local stormwater management requirements that may result from a State-imposed TMDL.

2.3 Stormwater Management Plans

The stormwater management plan (also referred to as "the plan") is defined as the engineering plan for the design of stormwater management facilities and best management practices within a proposed development or redevelopment. This section includes specific requirements and information on plan contents and approval requirements, and provides general guidance on the approval process.

2.3.1 General Policies

The reader is referred to the city's stormwater management ordinance for provisions pertaining to stormwater management plans. Beyond those provisions, the policies that shall apply to stormwater management plans are listed below.

- The stormwater management plan must be submitted as part of, and at the same time as, the larger subdivision or site plan for the development or redevelopment, along with any required plan review fees. The plan will be reviewed for compliance with local stormwater management regulations, this manual, and any other applicable local requirements. Only complete plans will be accepted for review.
- Issuance of a land disturbing permit may be contingent on approval of the stormwater management plan. The reader is referred to other applicable regulations or policies for information on the city's subdivision or site plan submittal/review/approval process.

- If applicable to the proposed new development or redevelopment, an Endangered Species Act (ESA) review shall be completed prior to submittal of a stormwater management plan. The results of the ESA review must be submitted as part of the plan. The plan cannot be reviewed or approved if the ESA review has not been performed. ESA review applicability is addressed in section 2.3.2 of this chapter.
- A stormwater management plan checklist that provides a complete inventory of the required contents of the plan is presented in Appendix D of this manual. Use of this checklist is required, to ensure submittal of a complete plan and expedite the plan review process. The plan shall include, at a minimum, the elements listed in the checklist, unless the element is not applicable to the project. These requirements should be checked as "not applicable." Omission of any required items shall render the plans incomplete, and they will be returned to the applicant, or their engineer, so that they may be completed. When the stormwater management plan is submitted, the applicant must attach a signed copy of the checklist to certify that a complete package is being submitted.
- If applicable to the proposed new development or redevelopment, a special pollution abatement plan shall be required for submittal as part of the stormwater management plan. The special pollution abatement plan applicability is addressed in section 2.3.3 of this chapter.
- The applicant may also be required to meet State and Federal regulations for construction activities that will have an impact on Waters of the State, wetlands, sinkholes and threatened or endangered species. It is the responsibility of the applicant to thoroughly review, understand and adhere to all applicable local, state and federal laws and regulations with regard to site development and property regulations when submitting the stormwater management plan. Copies of all applicable State and Federal permits must be provided to the local plan review agency as part of the stormwater management plan.

2.3.2 Endangered Species Act Review

The MS4 Permit (discussed previously in this chapter) requires the local jurisdiction to consider the potential impacts of stormwater discharges on species that are listed as endangered or threatened under the ESA and on habitat that is designated as "critical" under the ESA. Because of these requirements, any proposed development that is located within, or discharges stormwater runoff to, an area designated as containing threatened species, endangered species, or critical habitat (as defined by the ESA) shall be reviewed by the United States Fish and Wildlife Service (USFWS) prior to submittal of a stormwater management plan. If USFWS determines that the proposed development may, or will, impact an endangered or threatened species, or critical habitat, an informal consultation may be required by USFWS to determine the BMPs that will mitigate the potential ESA-related impacts. Often, such impacts will be construction related, and therefore will impact the design of erosion prevention and sediment control measures. It is the responsibility of the property owner to work with USFWS to ensure compliance with the ESA.

The city is not the regulatory agencies tasked with enforcing the ESA, and therefore cannot advise the property owner on ESA compliance practices and options. However, BMPs that are utilized to mitigate ESA-related impacts must be:

- approved by USFWS (or other agency as designated by USFWS); and,
- included in the stormwater management plan, or other plan as appropriate, and must be identified on such plan(s) as "<u>USFWS-accepted BMPs</u>";

Once plan approval is received by the local jurisdiction, USFWS-accepted BMPs that are shown on plans will be enforced by the local jurisdiction as a matter of compliance with approved plans. Variations from USFWS-accepted BMPs shown on approved plans will not be allowed by the local

jurisdiction without a copy of written acceptance of such variations by USFWS.

The city does not have the authority to expedite USFWS reviews and informal consultations. Therefore, person(s) responsible for proposed developments should consider the additional time required to coordinate with USFWS when preparing development schedules and costs. Questions regarding a USFWS consultation for any particular site should be forwarded to the USFWS office in Cookeville, Tennessee. Contact information for USFWS is presented in Appendix C.

In order to facilitate an understanding of when ESA reviews are needed, each local jurisdiction has a Threatened and Endangered Species buffer map. This map shall be used to determine which proposed developments will require review by USFWS. This map is prepared and maintained by the USFWS, and is available from the local jurisdiction for use by the general public. The map will be updated by the city as needed to remain current.

Proposed developments that are located within an area identified on the Threatened and Endangered Species buffer map, or are located in a watershed that discharges to a buffered stream shown on the map, must submit for a review by USFWS. A copy of the results of the USFWS determination must be provided, in writing, with <u>all</u> grading and development plans submitted to the city. Further, proposed developments that undergo informal consultation by USFWS must also present, in detail, the BMPs that have been accepted by USFWS to mitigate ESA-related impacts. A copy of the BMP acceptance by USFWS must also be provided. Stormwater management plans that do not comply with these requirements will not be accepted for review.

2.3.3 Special Pollution Abatement Plans

A Special Pollution Abatement Plan (SPAP) may be required for new developments and redevelopments on the basis of: 1) land use or type of business; 2) a history of air or water pollution at a site; 3) a history of air or water pollution by an owner/operator at other sites; 4) the potential to impact environmentally sensitive areas, such as wetlands; or 5) at the discretion of the city upon sound engineering judgment. The city's stormwater management regulation(s) will provide information on the applicability of a SPAP. A SPAP template is provided in Appendix D of this manual (City of Knoxville, 2006).

To obtain coverage under a SPAP, the property or business owner must submit a SPAP (see Appendix D) and any application fee, if appropriate, with the stormwater management plan. The SPAP requires supporting documentation for the BMP(s) proposed to reduce or mitigate special pollutants, including BMP specifications and maintenance information. SPAP-related BMPs must be included in the record drawings for the site.

Like any stormwater management BMPs, SPAP-related BMPs must be maintained in proper operating condition throughout the life of the land use or business, or otherwise as appropriate for the conditions of the site. It is the responsibility of the property owner to inspect and maintain SPAP-related BMPs, and to document such inspections and maintenance activities. Such documentation must be maintained by the property owner and provided to the city upon request. Further, the city shall have the authority to inspect SPAP-related BMPs for long-term operation and performance, and to order corrective actions if necessary.

The following minimum standards shall be addressed in the SPAP:

• Employees and/or staff of the business or land use type shall be trained annually on the requirements of the SPAP, specifically addressing pollution source controls such as spill control and cleanup, proper waste management, chemical storage, and fluids management with vehicle servicing. The type of training shall be tailored to and appropriate for the land use or business. Documentation of the training shall be maintained with the SPAP and made available to the city upon request.

- Parking lots shall be swept monthly to remove gross solids. Waste gathered during sweeping activities shall be disposed of properly.
- Animal waste shall be prevented from entering streams, sinkholes, wetlands, ponds or any other component of the storm drain system. Controls shall be instituted to collect the animal waste and properly treat or dispose of it.
- Structural BMPs that have been designed to specifically address the target pollutants associated with the land use shall be utilized where appropriate to reduce pollutant loadings. This requirement does not alleviate new developments and redevelopments from stormwater management design criteria for total suspended solids (TSS), as discussed in Chapter 3. BMPs that are implemented to comply with SPAP minimum standards can factor into the % TSS calculation, provided that they have TSS removal capabilities. Percent TSS removal values and policies for stormwater treatment BMPs are presented in Chapter 3 of this manual. Table 2-1 presents target pollutants for the land uses for which a SPAP is required.
- Structural BMPs shall be inspected and maintained by the owner/permittee. Inspections must be conducted at least annually. Maintenance shall be conducted as needed and as required by the manufacturer of the structural BMP or by the city. Documentation of such inspections shall be maintained by the owner and made available to the city upon request.

Land use	Target Pollutant
Vehicle, truck or equipment maintenance, fueling, washing or storage areas including but not limited to: automotive dealerships, automotive repair shops, and car wash facilities	Oil, grease, detergents, solids, metals
Recycling and/or salvage yard facilities	Oil, grease, metals
Restaurants, grocery stores, and other food service facilities	Oil, grease, trash
Commercial facilities with outside animal housing areas including animal shelters, fish hatcheries, kennels, livestock stables, veterinary clinics, or zoos	Bacteria, nutrients
Other producers of pollutants identified by the local jurisdiction by information provided to or collected by him/her or his/her representatives, or reasonably deduced or estimated by him/her or his/her representatives from engineering or scientific study	As identified by the local jurisdiction

Table 2-1. Target Pollutants for SPAP Land Uses

2.3.4 Pre-Design Conference

This stormwater management manual contains many different BMPs and "better site design" alternatives that can be applied on a new development or redevelopment site. As a result of this, there is a large degree of flexibility in the design of a site that is offered to local developers and site design engineers. Prior to submittal of site design plans, the city strongly encourages the use of a pre-design conference with the developer and site designer to discuss potential site layout, design, and construction sequence.

A pre-design conference is not mandatory. The developer is encouraged to invite representatives of other regulatory or permitting agencies to the pre-design conference. The objectives of this meeting would be to:

- Review the site topography, existing vegetative condition, and preliminary site development lay-out (if already determined);
- identify the natural drainage conditions (for new development) and existing drainage conditions

(for redevelopments);

- identify any environmentally-sensitive features, such as streams, wetlands, sinkholes, and steep slopes, that should be avoided by the development or redevelopment;
- discuss preliminary strategies for site clearing, grading and construction;
- discuss preliminary design strategies for erosion and sediment control, road geometry and layout, stormwater treatment practices, water quality buffers, and encourage the use of better site design practices and water quality volume (WQv) credits; and,
- determine how the technical guidelines and criteria presented in this manual should be applied to the site.

The city is not responsible for development of a design plan for the site as a result of the predesign conference. Further, the pre-design conference should not be considered as an endorsement or pre-approval of any design plans that will be submitted to the city later in the development process. The developer is responsible for requesting and scheduling the pre-design conference, and for inviting others as appropriate for his/her needs (e.g., the site design engineer, representatives of other agencies).

2.4 Bonds

A performance bond may be required by the city for land disturbing activities, and/or the construction of new developments and redevelopments when:

- 1) there is a potential for runoff to adversely impact local rights-of-way, other property, and/or streams, wetlands, ponds or lakes; or,
- 2) an erosion prevention and sediment control plan is required; or,
- 3) a stormwater management plan is required; or,
- 4) there is construction of a joint permanent easement or public road; or
- 5) the area of grading or development drains to one or more sinkholes; or,
- 6) the site is used for a borrow pit.

The purpose of the performance bond is to ensure that the person(s) responsible for completing the land disturbing activities and/or construction work that has the potential to impact the public interest if performed improperly completes the work in an appropriate manner. The performance bond provides assurance to the city that it will be reimbursed when it must assume the costs of corrective measures and/or work not completed by the responsible person(s) according to the required specifications and approved plans. A performance bond can be used to cover the city's costs for the remediation or demolition of roadways, stormwater management facilities and related appurtenances, the installation and maintenance of EPSC measures and EPSC corrective actions, final soil stabilization of a site, and the establishment, protection, and maintenance of water quality buffers.

Performance bonds are administered by the city. The dollar amount of the performance bond will be determined, based on the information presented in the approved EPSC and/or stormwater management plan.

General policies regarding release of a performance bond are as follows.

1) An accurate as-built must be completed for the property.

- 2) Portions of the property that will be used for the stormwater management system must be recorded as a permanent drainage, water quality, preservation, and/or access easement, as appropriate for each system component.
- 3) If found within the boundaries of the development, any one of the following items could keep areas or activities from being released from the performance bond:
 - areas of erosion or unstabilized areas;
 - potential for discharges of sediment, or construction-related and other wastes;
 - engineering or structural deficiencies or maintenance issues associated with constructed roadways, the stormwater system, or stormwater management best management practices;
 - unsafe conditions;
 - unhealthy, damaged or poorly growing vegetation in a vegetated buffer that has been impacted by construction.

2.5 As-Builts

Policies pertaining to as-builts are as follows.

- Prior to obtaining a Certificate of Occupancy, two (2) complete copies of as-built drawings with the appropriate professional certifications must be provided to the city for approval. The drawings will be compared to the approved site or subdivision plan for any irregularities or non-conformance with the approved plans.
- The as-builts shall reflect the "as-constructed" condition of the development, and shall include sufficient information to demonstrate conformance with the approved plan(s). Significant deviations from the approved plan(s) shall be considered violations of local ordinances and are grounds for the invocation of the injunctions and penalties defined therein, and/or withholding the release of a bond pending the completion of corrective action(s), and/or requiring a submittal of a revised stormwater management plan. In the event that submittal of a revised plan is required, the revision shall include a description of the discrepancies between the site conditions and the prior approved stormwater management plan, along with design calculations that demonstrate that the as-built conditions comply with local stormwater control requirements.
- Should the as-built conditions be shown to have a negative impact with regards to flooding, maintenance, erosion or water quality, other mitigation measures and proposed design plans to mitigate any potential impacts from the development may be required.
- Only complete as-builts will be accepted. The as-built checklist presented in Appendix E shall be included to indicate that a complete plan is being submitted. As-builts shall contain the information and certification(s) listed, as applicable to the development. Some requirements of the checklist in Appendix E will not be applicable to all projects. These requirements should be checked as "not applicable". Additional information may be requested as necessary to allow a thorough review of the as-constructed conditions. Omission of any required items shall render the as-builts incomplete, and they will be returned to the applicant, or their engineer, so that they may be completed.
- Plats, easements and BMP locations shown must be field checked by the property owner or developer prior to submitting the as-built to ensure that the field locations are approximately correct. Prior to submittal of the as-builts, all easements and survey plats must be recorded with the Register of Deeds, and any protective covenants pertaining to stormwater management shall be executed. Copies of the recorded documents or other verification of the

recording shall be included with the as-builts.

 As-builts must be prepared and stamped by the appropriate design professional as required to stamp the original stormwater management plan, and/or a registered land surveyor licensed to practice in the State of Tennessee. Land surveyors providing as-builts must provide the following certification, in addition to the surveyor's seal and an original signature and date across the seal.

I hereby certify that I have surveyed the land boundaries and easements shown hereon in accordance with the accuracy requirements for a Category I survey and that the ratio for precision of the unadjusted survey is not less than 1:10,000.

I further certify that I have located all natural and manmade features shown hereon in accordance with the current Standards of Practice as adopted by the Tennessee State Board of Examiners for Land Surveyors. I certify the location, elevation and description of these features.

Printed name	Date	RLS Number
--------------	------	------------

The reviewing engineer shall provide the following certification, in addition to the engineer's seal and an original signature and date across the seal.

Based upon site observations and/or information provided by a registered land
surveyor, I hereby certify that all grading, drainage, structures and/or systems,
erosion and sediment control practices including facilities and vegetative
measures, have been completed in substantial conformance with the approved
plans and specifications.

Printed name

Date

PE Number

2.6 References

City of Knoxville. *Land Development Manual.* City of Knoxville Engineering Department, Stormwater Division, June 2006.

Table of Contents

CHAPTER 3 — Stormwater Quality Standards

3.1	Water Quality Protection Approach	-1
3.2	General Policies	-2
3.3	Stormwater Quality Management 3- 3.3.1 Minimum Standard and General Policies 3- 3.3.2 Calculation of % TSS Removal 3- 3.3.2.1 Multiple BMPs 3- 3.3.2.2 BMPs in Series 3- 3.3.2.3 Calculation of % TSS Removal for Flow-through Situations 3- 3.3.3 Calculation of % TSS Removal for Flow-through Situations 3- 3.3.3 Calculation of Water Quality Volume (WQv) 3- 3.3.4 The Determination of Percent Imperviousness 3- 3.3.5 Reducing the WQv 3-1 3.3.6 The Design of Outlets Used for Extended Detention 3-1 3.3.7 Calculating the Water Quality Peak Discharge 3-1 3.3.8 Water Balance Calculations 3-1 3.3.8.1 Basic Equations 3-1	-2 -3 -4 -5 -6 -7 10 13 16
3.4	Channel Protection3-23.4.1 Minimum Standard3-23.4.2 Estimation of the Channel Protection Volume3-23.4.3 The Design of Channel Protection Outlets3-2	21 21
3.5	Downstream Impact Analysis	25
3.6	References	30

Chapter 3 - List of Figures

FIGURE #	TITLE	Page #
Figure 3-1	Integration of Stormwater Controls	3-1
Figure 3-2	SCS Type II Unit Peak Discharge Graph	3-15
Figure 3-3	Average Annual Free Water Surface Evaporation	3-19
Figure 3-4	Detention Time vs. Discharge Ratios	3-22
Figure 3-5	Approx. Detention Basin Routing for Rainfall Types I, IA, II and III	3-23
Figure 3-6	Illustration of the Channel Protection Standard	3-25
Figure 3-7	Potential Effect of On-Site Detention on Receiving Streams	3-26
Figure 3-8	Potential Effect of Cumulative Detention Basins	3-27
Figure 3-9	10% Rule Example	3-29

Chapter 3 - List of Tables

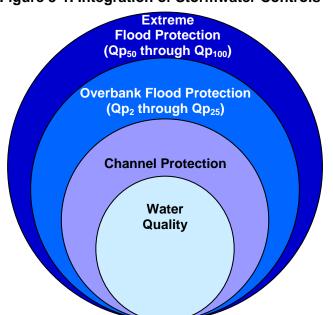
TABLE #	<u>TITLE</u>	Page #
Table 3-1	TSS Removal % for Structural BMPs	3-3
Table 3-2	% Impervious Area Values for Subdivisions	3-7
Table 3-3	Summary of WQv Reductions for Better Site Design	3-11
Table 3-4	Initial Abstraction (I _a) for Runoff Curve Numbers	3-14
Table 3-5	Average Rainfall Values in Inches for TriCities, Tennessee	3-17
Table 3-6	Saturated Hydraulic Conductivity	3-18
Table 3-7	Pan Evaporation Rates – Monthly Distribution	3-19

Chapter 3 - List of Equations

TITLE	Page #
Area-weighted TSS reduction equation (% TSS)	3-4
Total TSS removal for treatment train, % (TSStrain-series)	3-4
Total TSS removal for treatment train, % (TSStrain-parallel)	3-5
Water quality volume of the site, acre-feet (WQv)	3-6
Runoff coefficient (Rv)	3-6
Percent Impervious area, acres (I)	
Water quality runoff depth, inches (Qwv)	3-13
Runoff curve number (CN)	3-13
Water quality peak discharge, cfs (Qwq)	3-14
Change in pond volume, acre-feet (DV)	3-17
Change in pond volume-Expanded, acre-feet (DV)	3-17
Total runoff volume, cubic feet	3-18
Runoff depth, feet (Q)	3-18
Infiltration, acre-feet/day (I)	3-18
Required storage volume:Runoff volume, ac-ft/ac-ft (Vs/Vr)	3-22
Required storage volume, acre-feet (Vs)	3-23
	Area-weighted TSS reduction equation (% TSS)Total TSS removal for treatment train, % (TSStrain-series)Total TSS removal for treatment train, % (TSStrain-parallel)Water quality volume of the site, acre-feet (WQv)Runoff coefficient (Rv)Percent Impervious area, acres (I)Water quality runoff depth, inches (Qwv)Runoff curve number (CN)Water quality peak discharge, cfs (Qwq)Change in pond volume, acre-feet (DV)Change in pond volume-Expanded, acre-feet (DV)Total runoff volume, cubic feetRunoff depth, feet (Q)Infiltration, acre-feet/day (I)Required storage volume:Runoff volume, ac-ft/ac-ft (Vs/Vr)

Chapter 3 - List of Examples

EXAMPLE #	TITLE	Page #
Example 3-1	Calculation of %TSS for BMPs in a Series	
Example 3-2	Calculation of %TSS in a Flow-through Situation	3-5
Example 3-3	Calculation of Percent Impervious Area (I)	3-8
Example 3-4	ED Outlet Design Method 1: Maximum Hydraulic Head	3-11
Example 3-5	ED Outlet Design Method 2: Drawdown Analysis	3-12
Example 3-6	Calculation of Water Quality Peak Flow	3-16
Example 3-7	Water Balance Calculation for Basin	3-20
Example 3-8	Estimation of CPv	3-23
Example 3-9	Ten Percent Rule Example	3-28


This page left intentionally blank

WATER QUALITY STANDARDS

3.1 Water Quality Protection Approach

This chapter represents policies, criteria and calculation methods for the design of the water quality best management practices (BMPs) presented in Chapter 4 of this manual. The design criteria presented herein communicate the regional approach to address the key adverse impacts of stormwater runoff from a development site presented in Chapter 1. The purpose of the design criteria is to provide a framework for design of the site's stormwater management system in order to remove stormwater runoff pollutants, improve water quality, and prevent downstream streambank and channel erosion. This chapter does not provide criteria and calculation guidance for stormwater quantity (e.g., hydraulic drainage design, detention/retention) design; please refer to the ordinances and other regulatory code of the local jurisdiction for stormwater quantity regulations.

While this manual does not address local stormwater quantity design requirements, site designers should note that design criteria for water quality, channel protection and stormwater quantity can often be blended together. This enables the sizing and design of structural stormwater controls in conjunction with each other to address the overall stormwater impacts from a development site. When stormwater design criteria are considered as a set, the site designer can control the range of design events, from the smallest amounts of runoff that are treated for water quality, to events requiring extreme flood protection, such as the 100-year storm. Figure 3-1 graphically illustrates the relative volume requirements of the various stormwater controls and demonstrates that, in some cases, the controls can be "nested" within one another (i.e., the extreme flood protection volume requirement also contains the overbank flood protection volume, the channel protection volume and the water quality treatment volume).

Figure 3-1. Integration of Stormwater Controls

3.2 General Policies

The following general policies shall apply to all water quality management and channel protection design calculations.

- 1. Design computations shall be performed in accordance with the calculation guidance provided in this manual, or other criteria that the local jurisdiction establishes based on scientific and engineering information.
- 2. Stormwater runoff resulting from post-development conditions must be routed at appropriately small time intervals through water quality BMPs, as appropriate, using either hand calculations or computer models that are widely accepted among engineering professionals.
- 3. All design computations utilized in the design of water quality BMPs must be prepared by a registered engineer or landscape architect proficient in the field of hydrology and hydraulics and licensed to practice in the State of Tennessee.

3.3 Water Quality Management

3.3.1 Minimum Standard and General Policies

Local ordinances require that stormwater runoff discharging from new development or redevelopment sites be treated to remove pollutants prior to discharge from the site. This requirement shall be implemented in accordance with the **Water Quality Minimum Treatment Standard** and associated policies presented in items 1 through 5 below. Policies that are specific to individual design calculations and/or BMPs are included later in this chapter.

- 1. Water quality BMPs shall be designed to remove, at a minimum, 80% of the average annual post-development total suspended solids (TSS) load from the stormwater volume required for water quality treatment, called the water quality treatment volume (WQv). This standard is also referred to in this manual as "the 80% TSS removal standard".
- 2. WQv and % TSS removal shall be calculated for the development or redevelopment in accordance with the policies and calculation guidance provided in this chapter. In order to comply with the 80% TSS removal standard, the result of the % TSS removal calculations for the development or redevelopment must be equal to, or greater than, 80%.
- 3. It is presumed that a stormwater management system complies with the Water Quality Minimum Treatment Standard if structural BMPs are selected, designed, constructed and maintained in accordance with the design criteria specified in this manual. Only those BMPs that are published in Chapter 4 of this manual are permitted for use as a water quality BMPs. Other BMPs are prohibited, unless approved by the local jurisdiction. The structural BMPs deemed acceptable for use to attain the Water Quality Minimum Treatment Standard are listed in Table 3-1.
- 4. Table 3-1 also presents the % TSS removal value assigned to each BMP. This value shall be used to calculate the total weighted % TSS removal for the development site.
- 5. The local jurisdiction may require additional water quality treatment criteria or controls to conform to State and/or Federal regulatory requirements, and/or additional watershed or site-specific water quality requirements that are defined by the State or Federal officials, or the local jurisdiction. For example, additional treatment criteria may be required if, in the opinion of the local jurisdiction, the new development or redevelopment is considered a pollutant "hotspot", where the land use or activities may generate highly contaminated runoff, with concentrations of pollutants in excess of those typically found in storm water. Examples of hot spot land uses might include operations producing concrete or asphalt, auto repair shops, auto supply shops, large commercial parking areas, restaurants.

Table 3-1. TSS Removal % for Structural BMPs		
Structural BMP	TSS Removal %	
General Application BMPs		
Wet Basin	80	
Wet Extended Detention	80	
Micropool Extended Detention Basin	80	
Multiple Basin System	80	
Dry Extended Detention Basin	60	
Conventional Dry Detention Basins	10	
Shallow Wetland	80	
Extended Detention Shallow Wetland	80	
Basin/Wetland System	80	
Pocket Wetland	80	
Bioretention Area	85	
Sand Filters (Surface and Perimeter)	80	
Infiltration Trench	90	
WQ Dry Swales	90	
Wet Swales	75	
Filter Strip	50	
Grass Channel ¹	30	
Gravity (oil-grit) Separator	30	
Modular Porous Paver Systems ²	*	
Porous Pavement/Concrete ²	*	
Limited Application BMPs		
Organic Filter	80	
Underground Sand Filter	80	
Submerged Gravel Wetland	75	
Alum Treatment System	90	
Manufactured BMPs	10 ³	
Underground Detention	10	

_ . . -- -. _ _ _ _

1 – Refers to open channel practice not designed for water quality.2 – These practices are not treatment BMPs but are source control BMPs, so they are not assigned a pollutant removal.

3 - Provisional % TSS Removal value pending third party information. See Section 4.4.5 in Chapter 4 for policies for manufactured BMPs.

3.3.2 Calculation of % TSS Removal

The % TSS removal for the BMPs proposed for a new development or redevelopment must be calculated using the equations presented in this section.

3.3.2.1 Multiple BMPs

Equation 3-1 is an area-weighted TSS reduction equation that accounts for the TSS reduction that is contributed from each water quality BMP that is utilized on the site. This equation is applicable to those developments or redevelopments where multiple BMPs are used to treat the WQv. If only one BMP is utilized for WQv treatment, then the % TSS removal value is simply that assigned to the BMP (see Table 3-1). Equation 3-1 is applicable in situations where a site has multiple subwatersheds that flow to different BMPs, and none of the BMPs are placed downstream of another BMP.

n

Equation 3-1

$$\%TSS = \frac{\sum_{1}^{n} (TSS_{1}A_{1} + TSS_{2}A_{2} + \dots + TSS_{n}A_{n})}{\sum_{1}^{n} (A_{1} + A_{2} + \dots + A_{n})}$$

where:

 TSS_n = TSS removal percentage for each structural BMP located on-site (%); A_n = the area draining to each BMP (acres).

3.3.2.2 BMPs in Series

It will often be the case that the site designer will want to use two or more BMPs (structural and/or non-structural) in series, where stormwater treated in one BMP is discharged into another BMP for further treatment. Such BMP combinations are also called treatment trains. How and why BMPs might be used in treatment trains is discussed in Chapter 4 of this manual. This section presents the calculation of the total % TSS removal for treatment trains.

Equation 3-2 is used to calculate the total % TSS removal for a treatment train comprised of two or more structural BMPs.

Equation 3-2

$$TSS_{train} = TSS_A + TSS_B - \frac{(TSS_A \times TSS_B)}{100}$$

where:

$$\begin{split} TSS_{train} &= total TSS removal for treatment train (\%); \\ TSS_A &= \% TSS removal of the first (upstream) BMP, from Table 3-2 (\%) \\ TSS_B &= \% TSS removal of the second (downstream) BMP, from Table 3-2 (\%). \end{split}$$

For development sites where the treatment train provides the only water quality treatment on the site, TSS_{train} must be greater than or equal to 80%. For development sites that have other structural BMPs for water quality treatment that are not included in the treatment train, TSS_{train} must be included in Equation 3-1 in the calculation of the overall % TSS removal for the site. An example application of the latter situation is presented below.

Example 3-1. Calculation of %TSS for BMPs in Series

A water quality management system located on a 30 acre development site consists of a dry extended detention basin, a water quality dry swale, and a shallow wetland. The extended detention basin and dry swale are located in series, with the basin as the upstream control. The treatment train treats stormwater runoff from 20 acres of the site. The shallow wetland treats 10 acres. All three facilities are designed in accordance with this manual. What is the % TSS removal rate for the site?

The % TSS removal value for each BMP located on the site is determined from Table 3-1, as follows:

Control A (dry extended detention basin) = 60% TSS removal

Control B (water quality dry swale) = 90% TSS removal **Control C** (shallow wetland) = 80% TSS removal

Step 1: Calculate TSS_{train}:

 $TSS_{train} = A + B - (A \times B)/100 = 60 + 90 - (60 \times 90)/100 = 96\%$ removal

Step 2: Calculate % TSS removal for the site:

%TSS = ((TSS_{train} x 20 acres) + (%TSS_{wetland} x 10 acres)) ÷ 30 acres %TSS = ((96% x 20 acres) + (80% x 10 acres)) ÷ 30 acres = 91%

Therefore, the % TSS removal for the site is 91%, which exceeds the minimum standard of 80% TSS removal. No other BMPs need to be constructed at the site.

3.3.2.3 Calculation of % TSS Removal for Flow-through Situations

BMPs within a treatment train may sometimes be separated by a contributing drainage area. In this case, equation 3-2 cannot be used, since some of the flow entering the downstream BMP has not been treated by the upstream BMP. This section presents the calculation of the total % TSS removal for flow-through situations.

To calculate the total % TSS removal for a treatment train separated by a contributing drainage area, Equation 3-3 shall be used.

$$TSS_{train} = \frac{TSS_AA_A + TSS_BA_B + \frac{TSS_BA_A(100 - TSS_A)}{100}}{A_A + A_B}$$

where:

Equation 3-3

 $\begin{array}{l} TSS_{train} = total TSS removal for treatment train (\%);\\ TSS_A &= \% TSS removal of the first (upstream) BMP, from Table 3-2 (\%)\\ TSS_B &= \% TSS removal of the second (downstream) BMP, from Table 3-2 (\%)\\ A_A &= Area draining to BMP A\\ A_B &= Area draining to BMP B. \end{array}$

For development sites where the treatment train provides the only stormwater treatment on the site, TSS_{train} must be greater than or equal to 80%. An example application of Equation 3-3 is shown below.

Example 3-2. Calculation of %TSS in a Flow-through Situation

A stormwater management system located on a 9 acre development site consists of a dry extended detention pond, and a bioretention cell. Five acres drain to the bioretention cell, which then drains to a pipe system. The pipe system also drains an additional 4 acres that have not been treated for water quality. The pipe system leads to a dry extended detention pond, that is used for final treatment. Both facilities are designed in accordance with the guidance in this manual. What is the % TSS removal rate for the site?

The % TSS removal value for each BMP located on the site is determined from Table 2-2, as follows:

Control A (bioretention cell) = 85% TSS removal **Control B** (dry extended detention pond) = 60% TSS removal

<u>Step 1:</u> Calculate TSS_{train}:

$$TSS_{train} = \frac{TSS_A A_A + TSS_B A_B + \frac{TSS_B A_A (100 - TSS_A)}{100}}{A_A + A_B}$$
$$TSS_{train} = \frac{85x5 + 60x4 + \frac{60 * 5(100 - 85)}{100}}{5 + 4}$$

 $TSS_{train} = 78.9\%$

The % TSS removal for the site is 78.9%, which is below the minimum standard of 80% TSS removal. The conversion of the stormwater pipe system to a grass swale would add additional pollutant removal and help the site meet the 80% criteria.

3.3.3 Calculation of the Water Quality Volume (WQv)

The calculation of % TSS removal tells the designer how well the water is treated. Next, the designer must consider how *much* water must be treated. The volume of water that must be treated to the 80% TSS removal standard is called the water quality volume (WQv). Compliance with the 80% TSS removal standard requires the calculation of the WQv for the entire development site. To obtain the lowest WQv for the site, this calculation should be performed <u>after</u> better site design practices that may be envisioned for the site have been considered and are included in design plans.

The WQv shall be calculated using Equation 3-4, as follows:

Equation 3-4

$$WQv = \frac{PRvA}{12}$$

where:

WQv	= water quality volume of the site (acre-feet);
Р	= rainfall depth for the 85% storm event (1.04 inches);
Rv	= runoff coefficient; and,
А	= site area (acres).

The runoff coefficient (Rv) shall be calculated using Equation 3-5.

Equation 3-5 Rv = 0.015 + 0.0092I

where:

= percent impervious area of the site (see Equation 3-6 below).

I

3.3.4 The Determination of Percent Imperviousness

Impervious areas are defined as impermeable surfaces which prevent the percolation of water into the soil. Impervious surfaces include, but are not limited to, paved surfaces such as walkways, sidewalks, patios, parking areas and driveways, packed gravel or soil, and structure rooftops. Other examples of impervious areas are paved recreation areas including pool houses and pool decks intended for use as a private (multi-family) or public recreation area, paved athletic courts (e.g., basketball, tennis), and storage buildings.

The percent impervious area (I) that is used to determine WQv is calculated using Equation 3-6.

Equation 3-6

$$I = \frac{I_A}{A} X100\%$$

where:

I_A = cumulative area of all impervious surfaces on the site (acres); A = site area (acres).

The determination of the impervious area (I_A) in order to calculate WQv shall be performed in the following manner:

 For residential subdivisions that will be served by one or more water quality BMPs, I_A shall be determined using percent (%) impervious values that were developed by the Soil Conservation Service (SCS)¹. Where the average lot size of a subdivision or a drainage area within the subdivision falls between the lot size categories shown in Table 3-2, the site designer may interpolate the % impervious value based on Table 3-2.

Residential Lot Size Range ¹	% Impervious
Less than ¼ acre	65
1/4 acre	38
⅓ acre	30
½ acre	25
³ ⁄ ₄ acre	22.5 ²
1 acre	20
2 acres and greater	15

Table 3-2. % Impervious Area Values for Subdivisions

1 – Includes lots and streets. Common areas must be measured separately.

2 – The % impervious value is linearly interpolated from SCS data.

The values shown in Table 3-2 shall be utilized only for the portion of the subdivision that is covered by individual residential lots and streets. Other areas, such as common areas for recreation or meeting facilities, shall be added separately in the calculation of I_A . The calculation of the % impervious value for a residential subdivision having a common area is presented in Example 3-3.

If lot sizes within a single subdivision fall into more than one of the lot size ranges listed in Table 3-2, the site designer shall consider the total amount of imperviousness in each lot range separately in the determination of the percent impervious value. Example 3-3 includes the calculation of the % impervious value for a residential subdivision having variable lot sizes.

¹ The Soil Conservation Service is now known as the Natural Resource Conservation Service (NRCS).

2. For planned unit developments where the building and paving footprints are known, as well as all nonresidential developments, I_A shall be determined from the measured impervious footprints for all impervious areas as defined above. It is required that the footprint for all impervious surfaces in the proposed development and the calculation of I_A be shown in the stormwater management plan.

After the development and/or redevelopment of the property is complete, property improvement activities that do not require the submittal of a water quality management plan will not require recalculation of the impervious percentage and WQv.

Example 3-3. Calculation of Percent Impervious Area (I)

A site design engineer is preparing a water quality management plan for a proposed residential development. The subdivision has a total area of 31 acres, and will include 52 residential lots ranging in area from approximately ¹/₄ acre to no greater than 1 acre (as shown in the table below). Three (3) acres will be preserved as an undisturbed forested vegetated buffer located along a stream that crosses the property, and therefore, there is no impervious coverage within these three acres. Another three (3) acres will be utilized for a recreational common area which includes a community pool, tennis courts and an associated parking lot. Due to local topography on the site, the subdivision drains to two separate water quality management facilities, herein called Facility A and Facility B, both of which provide water quality treatment. Twelve acres, including the 3 acre vegetated buffer and 3 acre common area, drain to Facility A. The other 19 acres drain to Facility B. The following table provides lot size, area and impervious data for the proposed subdivision. What is the % impervious area for the site?

Α	В	С	D
Lot Size	Number of Lots in	Sub-total Area of	% Impervious
	Size Range	Lots in Size Range	(from Table 3-2)
DRAINA	GE AREA A (AREA 1	DRAINING TO FAC	ILITY A)
approx. ⅓ acre	0	0 acres	30
approx. ½ acre	0	0 acres	25
approx. ³ / ₄ acre	2	1.3 acres	22.5
approx. 1 acre	5	4.7 acres	20
Area A Totals	7 lots	6.0 acres	
DRAINA	GE AREA B (AREA 1	DRAINING TO FAC	ILITY B)
approx. ¹ / ₃ acre	21	6.6 acres	30
approx. ½ acre	16	7.3 acres	25
approx. ³ / ₄ acre	7	4.3 acres	22.5
approx. 1 acre	1	0.8 acres	20
Area B Totals	45 lots	19.0 acres	

Since the site will be served by two separate detention facilities, it is best to determine the impervious area for each drainage area, rather than the overall impervious area for the site. For ease in calculation, the site design engineer decided not to interpolate impervious area values, preferring to group lots into approximate lot sizes that correspond to Table 3-2.

<u>Step 1</u>: Determine the total impervious area for the portion of each drainage area that is covered by residential lots and associated subdivision roads (I residential areas):

This is calculated by multiplying the sub-total area of each lot size range (column C from the above table) by the corresponding % impervious in that lot size range (column D from the above table). Results of this calculation are shown in the table below.

Α	В	С	D
Lot Size	Sub-total Area of	% Impervious	Sub-total
	Lots in Size Range	(from Table 3-2)	Impervious Area
DRAINA	GE AREA A (AREA]	DRAINING TO FAC	ILITY A)
approx. 1⁄3 acre	0 acres	30	$0 \ge 0.30 = 0 = 0$
approx. ½ acre	0 acres	25	$0 \ge 0.25 = 0 = 0$
approx. ¾ acre	1.3 acres	22.5	$1.3 \ge 0.225 = 0.29 $ ac
approx. 1 acre	4.7 acres	20	$4.7 \ge 0.20 = 0.94 $ ac
Area A Totals	6.0 acres		1.23 acres

DRAINAGE AREA B (AREA DRAINING TO FACILITY B)			
approx. ¹ / ₃ acre	6.6 acres	30	6.6 x 0.30 = 1.98 ac
approx. ½ acre	7.3 acres	25	$7.5 \ge 0.25 = 1.88$ ac
approx. ³ / ₄ acre	4.3 acres	22.5	$4.3 \ge 0.225 = 0.97$ ac
approx. 1 acre	0.8 acres	20	$0.8 \ge 0.20 = 0.16 $ ac
Area B Totals	19.0 acres		4.99 acres

Thus, the portions of the site where residential lots are located are covered by impervious surfaces as follows:

 $I_{A residential areas} = 1.23 \text{ acres}$ $I_{B residential areas} = 4.99 \text{ acres}$

<u>Step 2:</u> Measure the area of impervious footprints in the common areas that are located in Area A (I_A _{common areas}):

The following table presents the measurements of the impervious areas located in the common area.

Area Description	Impervious Area
Community pool (includes pool, surrounding deck, maintenance building and sidewalk from parking lot)	0.8 acres
Tennis court (includes two courts, surrounding paved areas, and sidewalk from parking lot)	1.2 acres
Common area driveway and parking lot	0.7 acres
Total impervious areas	2.7 acres

Thus, 2.7 acres of the 3 acre common area, located in Area A, is covered by impervious surfaces. $I_{A \text{ common areas}} = 2.7 \text{ acres}$

<u>Step 3:</u> Calculate the % impervious area (I) for each drainage area of the site using Equation 3-6. Because the vegetated buffer is entirely undisturbed, and therefore entirely pervious, it is not considered in the calculation.

For Area A:

$$\begin{split} \mathbf{I}_{\mathrm{A}} &= ((\mathbf{I}_{\mathrm{A} \text{ residential areas}} + \mathbf{I}_{\mathrm{A} \text{ common areas}}) \div 12 \text{ acres}) \ \mathrm{X} \ 100\% \\ \mathbf{I}_{\mathrm{A}} &= ((1.23 \text{ acres} + 2.7 \text{ acres}) \div 12 \text{ acres}) \ \mathrm{X} \ 100\% \\ \mathbf{I}_{\mathrm{A}} &= (3.9 \text{ acres} \div 12 \text{ acres}) \ \mathrm{X} \ 100\% \\ \mathbf{I}_{\mathrm{A}} &= 32.8\% \end{split}$$

For Area B:

$$\begin{split} I_B &= (I_B \text{ residential areas} \div 19 \text{ acres}) \ X \ 100\% \\ I_B &= (4.99 \text{ acres} \div 19 \text{ acres}) \ X \ 100\% \\ I_B &= 26.3\% \end{split}$$

Therefore, the % impervious area for Area A (I_A) for the site is 32.8%. The % impervious area for Area B (I_B) is 26.3%.

3.3.5 Reducing the WQv

It is important to remember that the WQv is proportional to impervious area, such that the amount of stormwater runoff requiring treatment increases as impervious area increases. In other words, the more you pave, the more you treat. Therefore, to reduce the amount of stormwater runoff that must be treated, the developer must find ways to reduce site imperviousness. Reductions in imperviousness are beneficial from a water quality management standpoint. Decreases in impervious area equate to less runoff, lower post-development peak discharges, and typically lower pollutant discharges. This can result in lower water quality management costs, as structural BMPs, channel protection, and flooding protection controls can be smaller in size.

In order to reduce the WQv for a development site, site designers are encouraged to use better site design practices. Better site design can be defined as a combination of non-structural design approaches intended to reduce the impacts of stormwater runoff from development through the conservation of natural areas, reduction of impervious areas, and integration of non-structural water quality BMPs. Such practices are often collectively referred to as "non-structural practices or non-structural BMPs". By implementing a combination of these non-structural approaches, it is possible to reduce the amount of runoff and pollutants that are generated from a site and provide for some non-structural on-site treatment and control of runoff.

The use of better site design practices on a development or redevelopment site to attain the 80% TSS removal standard is not required. A strong incentive for the use of such practices is provided via the WQv method (since it is proportional to impervious area) and through prescribed WQv reductions for the use of specific better site design practices. The WQv reductions are listed in Table 3-3 on the following page. Check with the local jurisdiction to determine which of these reductions are available for use in that jurisdiction. Detailed policies and design requirements for reductions and better site design practices are presented in Chapter 5 of this manual.

3.3.6 The Design of Outlets Used for Extended Detention

Once the WQv has been determined, the volume must be treated to the 80% TSS removal standard through the use of the BMPs found in Chapter 4. Several of the BMPs achieve TSS removal through extended detention (ED). Therefore, ED orifice sizing is required for these BMPs. For a structural control facility that will provide both WQv extended detention and channel protection volume control (to be discussed in section 3.4) (wet ED pond, micropool ED pond, and shallow ED wetland), there will be a need to design two outlet orifices. The water quality control outlet will be sized using drawdown time principles described below. The minimum standard for the channel protection and the sizing of the channel protection outlet is discussed in detail in section 3.4.

Table 3-3. Summary of WQv Reductions for Better Site Design

WQv Reduction	Description
Reduction 1: Natural area preservation	Undisturbed natural areas are conserved, thereby retaining the pre-development hydrologic and water quality characteristics.
Reduction 2: Managed area preservation	Managed areas of open space are preserved, reducing total site runoff and retaining near pre-development hydrologic and water quality characteristics.
Reduction 3: Stream and vegetated buffers	Stormwater runoff is treated by directing sheet flow runoff through a naturally vegetated or forested buffer as overland flow.
Reduction 4: Vegetated channels	Vegetated channels are used to provide water quality treatment.
Reduction 5: Impervious area disconnection	Overland flow filtration/infiltration zones are incorporated into the site design to receive runoff from rooftops and other small impervious areas.
Reduction 6: Environmentally sensitive large lot neighborhood	A group of site design techniques are applied to low and very low density residential development.

(The following procedures are based on the water quality outlet design procedures included in the Virginia Stormwater Management Handbook, 1999)

In an extended detention facility for water quality treatment, the storage volume is detained and released over a specified amount of time (e.g., no less than 24-hours). The release period is a brim drawdown time, with the assumption that the entire WQv is present in the basin at the beginning of drawdown. The entire calculated volume drains out of the basin over no less than 24 hours. In reality, however, water is flowing out of the basin prior to the full or brim volume being reached. Therefore, the extended detention outlet can be sized using either of the following two methods:

- 1. Use the maximum hydraulic head associated with the storage volume and maximum flow, and approximate the orifice size needed to achieve the required drawdown time. This procedure is outlined in Example 3-5.
- 2. Use a drawdown analysis to determine the drawdown time.

This is a accurate method for determining orifice sizes. Example 3-5 illustrates this method.

Example 3-4. ED Outlet Design Method 1: Maximum Hydraulic Head

A wet ED pond sized for the required water quality volume will be used here to illustrate the sizing procedure for an extended-detention orifice. Given the following information, calculate the required orifice size for water quality design.

- Water Quality Volume (WQv) = $0.76 \text{ ac-ft} = 33,106 \text{ ft}^3$
- Maximum Hydraulic Head $(H_{max}) = 5.0$ ft (from stage vs. storage data)

<u>Step 1.</u> Determine the maximum discharge resulting from the 24-hour drawdown requirement. It is calculated by dividing the WQv by the required time to find the average discharge, and then multiplying by two to obtain the maximum discharge.

 $Q_{avg} = 33,106 \text{ft}^3/(24 \text{hr})(3,600 \text{sec/hr}) = 0.38 \text{ cfs}$ $Q_{max} = 2Q_{avg} = 0.76 \text{ cfs}$

<u>Step 2.</u> Determine the required orifice diameter by using the standard orifice equation and Q_{max} and H_{max} :

Q = $CA(2gH)^{0.5}$, or A = Q/C(2gh)^{0.5}

A = $0.76/0.6[(2)(32.2)(5.0)]^{0.5} = 0.071 \text{ ft}^2$

- Step 3. Determine pipe diameter
 - A = $3.14d^2/4$, then d = $(4A/3.14)^{0.5}$
 - D = $[4(0.071)/3.14]^{0.5} = 0.30$ ft = 3.61 inches

Therefore, use a 3.6-inch diameter water quality orifice.

Example 3-5. ED Outlet Design Method 2: Drawdown Analysis

Using the data from the previous example (Example 3-4) use Method 2 to calculate the size of the outlet orifice. Use of a spreadsheet is highly recommended.

- Water Quality Volume (WQv) = $0.76 \text{ ac-ft} = 33,106 \text{ ft}^3$
- Maximum Hydraulic Head $(H_{max}) = 5.0$ ft (from stage vs storage data)

Step 1. Determine the pond stage-storage curve at increments of 0.1' or less.

- <u>Step 2.</u> Choose pond water elevation (first increment at H_{max} , others at end elevation of previous increment).
- <u>Step 3.</u> Assume an orifice size: Orifice diameter = 1" Orifice area = $(\pi/4)^*(\text{Diam}/12)^2$ Orifice area = $(3.14/4)^*(1/12)^2 = 0.00545 \text{ ft}^2$
- Step 4.Calculate flowrate at water surface elevation using orifice equation: $Q = CA(2gH)^{0.5}$ $Q = 0.6*0.00545*(2*32.2*5)^{0.5}$ Q = 0.0587 cfs
- Step 5.Calculate time to drain pond volume increment (keeping track of elapsed time):Time = Volume/Flowrate(Volume of increment from stage-storage curve)Time = 200/.0587 = 3407 seconds = 56.8 minutes
- <u>Step 6.</u> Repeat steps 1 through 5 for each elevation from WQv elevation to orifice center (keeping track of elapsed time).

Step 7. Check whether total drawdown time is greater than 24-hours:

3.3.7 Calculating the Water Quality Peak Discharge

The peak rate of discharge for the water quality design storm (Q_{wq}), also called the water quality peak discharge, is needed to size water quality BMPs that are located off-line, such as sand filters and infiltration trenches. See Chapter 4 of this manual for more information on off-line (versus on-line) BMPs.

This method is utilized for the sizing of water quality treatment controls. More traditional peak discharge calculation methods are not appropriate for this application for a variety of reasons. First, the use of more traditional methods, such as the Rational Method would require the choosing of an arbitrary design storm event that will differ from the 85th percentile storm event that must be treated for water quality. Further, conventional SCS methods have been found to underestimate the volume and rate of runoff for rainfall events of less than two inches. This discrepancy in estimating runoff and discharge rates can lead to situations where a significant amount of runoff bypasses the structural control due to an inadequately sized diversion structure and leads to the design of undersized bypass channels.

The method employed to calculate the water quality peak discharge uses the runoff coefficient to find the depth of runoff for the water quality storm of 1.04 inches. The SCS method is then used to find a unit peak discharge that is combined with the runoff depth to find a peak runoff rate.

The following procedure can be used to calculate Q_{wq} . This procedure relies on the Rv and the simplified peak discharge calculation:

1. Utilize Equation 3-7 to calculate D_{wq} .

Equation 3-7

 $D_{wq} = 1.04 Rv$

where:

D_{wq} = water quality runoff depth, in inches Rv = runoff coefficient (see Equation 3-5)

2. A runoff curve number (CN) can be estimated using the standard SCS Runoff Curve Number estimation technique, or can be computed utilizing Equation 3-8 (Pitt, 1994).

Equation 3-8

$$CN = \frac{1000}{10 + 5P + 10D_{wq} - 10(D_{wq}^{2} + 1.25D_{wq}P)^{\frac{1}{2}}}$$

where:

CN = runoff curve number

P = the 85th percentile rainfall, in inches (use 1.04 inches)

 D_{wq} = water quality runoff depth, in inches (see Equation 3-7)

- 3. Determine the initial abstraction (I_a) from Table 3-4, and the ratio I_a/P is then computed (P = 1.04 inches).
- 4. Compute the drainage area time of concentration (t_c) for the post-development land use with standard SCS methods.
- 5. The time of concentration is used with the ratio I_a/P to obtain the unit peak discharge, q_u , from Figure 3-2 for the Type II rainfall distribution. If the ratio I_a/P lies outside the range shown in the figure, use the limiting values.
- 6. The water quality peak discharge (Q_{wq}) is computed using Equation 3-9.

Equation 3-9

 $Q_{wq} = q_u A D_{wq}$

where:

 = the water quality peak discharge (cfs)
 = the unit peak discharge (cfs/mi²/inch)
 = drainage area (mi²) Q_{wq}

q_u A

 D_{wq} = water quality runoff depth, in inches (see Equation 3-7)

(Source: SCS, TR-55, Second Edition, June 1986)

(Source: SCS, TR-55, Second Edition, June 1986)								
Curve Number	l _a (in)	Curve Number	l _a (in)					
40	3.000	70	0.857					
41	2.878	71	0.817					
42	2.762	72	0.778					
43	2.651	73	0.740					
44	2.545	74	0.703					
45	2.444	75	0.667					
46	2.348	76	0.632					
47	2.255	77	0.597					
48	2.167	78	0.564					
49	2.082	79	0.532					
50	2.000	80	0.500					
51	1.922	81	0.469					
52	1.846	82	0.439					
53	1.774	83	0.410					
54	1.704	84	0.381					
55	1.636	85	0.353					
56	1.571	86	0.326					
57	1.509	87	0.299					
58	1.448	88	0.273					
59	1.390	89	0.247					
60	1.333	90	0.222					
61	1.279	91	0.198					
62	1.226	92	0.174					
63	1.175	93	0.151					
64	1.125	94	0.128					
65	1.077	95	0.105					
66	1.030	96	0.083					
67	0.985	97	0.062					
68	0.941	98	0.041					
69	0.899	-						

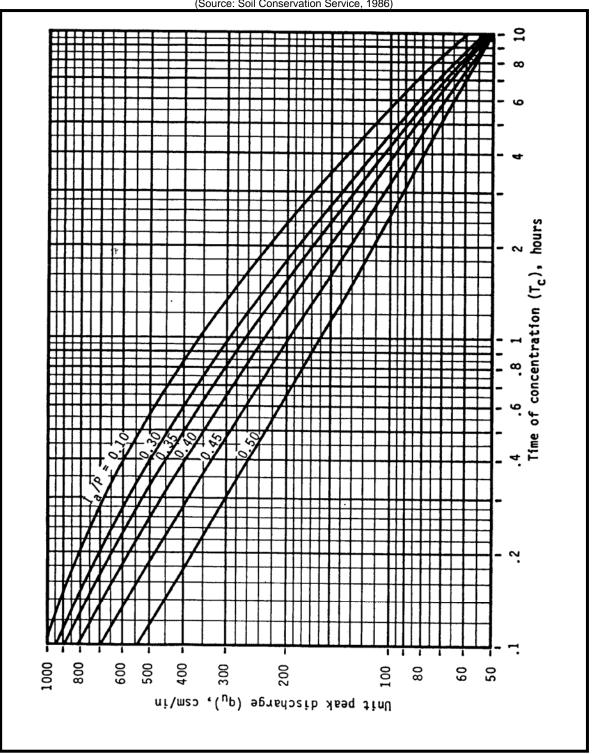


Figure 3-2. SCS Type II Unit Peak Discharge Graph (Source: Soil Conservation Service, 1986)

An example illustrating calculation of the water quality peak flow is given below.

Example 3-6. Calculation of Water Quality Peak Flow

For a 50 acre site, with 18 impervious acres.

Step 1: Compute volumetric runoff coefficient, Rv using Equation 3-5:

Rv = 0.015 + (0.0092)(I) = 0.015 + (0.00920(18/50)(100) = 0.35)

<u>Step 2.</u> Compute depth of runoff that must be treated for water quality, D_{wq} using equation 3-7:

 $D_{wq} = 1.04 Rv = 1.04(0.35) = 0.36$ inches

Step 3: Compute the synthetic curve number (CN) using Equation 3-8:

 $CN = \frac{1000}{[10 + 5(1.04) + 10(0.36) - 10[(0.36)^2 + 1.25(0.36)(1.04)]^{0.5} = 90}$

<u>Step 4:</u> Find Ia from CN with Table 3-4:

Ia = 0.22 inches Ia/P = 0.22/1.04 = 0.21

Step 5: Compute time of concentration, Tc: using SCS standard methods

Tc computed as 0.35 hours.

<u>Step 6:</u> Find q_u , using Tc = 0.35 and $I_a/P = 0.21$ using Figure 3-2:

 $q_u = 580 \text{ cfs/mi}^2/\text{in}$

Step 7: Compute water quality peak flow rate using Equation 3-9.

 $Q_{wq} = 580(50/640)(0.36)(1) = 16.3 \text{ cfs}$

3.3.8 Water Balance Calculations

Water balance calculations can help to determine if a drainage area is large enough or has the right characteristics to support a permanent pool of water during average or extreme conditions. When in doubt, a water balance calculation may be advisable for retention pond and wetland design.

The details of a rigorous water balance are beyond the scope of this manual. However, a simplified procedure is described herein that will provide an estimate of pool viability and point to the need for more rigorous analysis. Water balance can also be used to help establish planting zones in a wetland design.

3.3.8.1 Basic Equations

Water balance is defined as the change in volume of the permanent pool resulting from the total inflow minus the total outflow (actual or potential). Equation 3-10 presents this calculation.

 $\Delta V = \sum I - \sum O$

where:

- Δ = delta or "change in"
- V = basin volume (ac-ft)
- Σ = "the sum of"
- I = Inflows (ac-ft)
- O = Outflows (ac-ft)

The inflows consist of rainfall, runoff and baseflow into the basin. The outflows consist of infiltration, evaporation, evapotranspiration, and surface overflow out of the basin or wetland. Equation 3-10 can be expanded to reflect these factors, as shown in Equation 3-11. Key variables in Equation 3-11 are discussed in detail below the equation.

Equation 3-11

 $\Delta V = PA + R_a + Bf - ID - EA - EtA - Of$

where:

- P = precipitation (ft)
- A = area of basin (ac)
- R_o = runoff (ac-ft)
- B_{f} = baseflow (ac-ft)
- I = infiltration (ac-ftt)
- E = evaporation (ft)
- Et = evapotranspiration (ft)
- Of = overflow (ac-ft)
- D = number of days in a given month

<u>Rainfall (P)</u> – Monthly rainfall values can be obtained from the National Weather Service climatology at <u>http://www.srh.noaa.gov/mrx/climat.htm</u>. Monthly values are commonly used for calculations of values over a season. Rainfall is then the direct amount that falls on the basin surface for the period in question. When multiplied by the basin surface area (in acres) it becomes acre-feet of volume. Table 3-5 presents average monthly rainfall values for northeast Tennessee based on a 30-year period of record.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
P (feet)	0.29	0.28	0.33	0.27	0.36	0.32	0.35	0.25	0.26	0.19	0.26	0.28
Annual Precipitation 3.44												

Table 3-5. Average Rainfall Values in Feet for the Tri-Cities

Source: www.ncdc.noaa.gov/oa/climate/online/ccd/nrmpcp.txt

<u>Runoff (R_o)</u> – Runoff is equivalent to the rainfall for the period times the "efficiency" of the watershed, which is equal to the ratio of runoff to rainfall (Q/P). In lieu of gage information, Q/P can be estimated one of several ways. The best method would be to perform long-term simulation modeling using rainfall records and a watershed model.

Equation 3-12 gives a ratio of runoff to rainfall volume for a particular storm. If it can be assumed that the average storm that produces runoff has a similar ratio, then the Rv value can serve as the ratio of rainfall to runoff. Not all storms produce runoff in an urban setting. Typical initial losses (often called "initial abstractions") are normally taken between 0.1 and 0.2 inches. When compared to the rainfall records in northeast Tennessee, this is equivalent to about a 10% runoff volume loss. Thus, in a water balance calculation, a factor of 0.9 should be applied to the calculated Rv value to account for storms that produce no runoff. Equation 3-13 reflects this approach. Total runoff volume is then simply the product of runoff depth (Q) times the drainage area (A) to the basin, as shown in equation 3-12.

Equation 3-12

where:

- R_o = total runoff volume Q = runoff depth (ft)
- A = basin area (ft²)

Equation 3-13

O = 0.9PRv

 $R_o = Q x A$

where:

Q = runoff depth (ft)

P = precipitation (ft)

Rv = volumetric runoff coefficient (Equation 3-5)

<u>Baseflow (B_f)</u> – Most water quality basins and wetlands have little, if any, baseflow, as they are rarely placed across perennial streams. If so placed, baseflow must be estimated from observation or through theoretical estimates. Methods of estimation and baseflow separation can be found in most hydrology textbooks.

<u>Infiltration (I)</u> – Infiltration is a very complex subject and cannot be covered in detail here. The amount of infiltration depends on soils, water table depth, rock layers, surface disturbance, the presence or absence of a liner in the basin, and other factors. The infiltration rate is governed by the Darcy equation, shown in Equation 3-14.

Equation 3-14 $I = Ak_h G_h$

where:

- I = infiltration (ac-ft/day)
- A = cross sectional area through which the water infiltrates (ac)
- k_h = saturated hydraulic conductivity or infiltration rate (ft/day)
- G_h = hydraulic gradient = pressure head/distance

 G_h can be set equal to 1.0 for basin bottoms and 0.5 for basin sides steeper than about 4:1. Infiltration rate can be established through testing, though not always accurately. Table 3-6 can be used for initial estimation of the saturated hydraulic conductivity.

(Source: Ferguson and Debo, 1990)							
Material	Hydraulic Co	nductivity Kh					
Material	in/hr	ft/day					
ASTM Crushed Stone No. 3	50,000	100,000					
ASTM Crushed Stone No. 4	40,000	80,000					
ASTM Crushed Stone No. 5	25,000	50,000					
ASTM Crushed Stone No. 6	15,000	30,000					
Sand	8.27	16.54					
Loamy sand	2.41	4.82					
Sandy loam	1.02	2.04					
Loam	0.52	1.04					
Silt loam	0.27	0.54					
Sandy clay loam	0.17	0.34					
Clay loam	0.09	0.18					
Silty clay loam	0.06	0.12					
Sandy clay	0.05	0.10					
Silty clay	0.04	0.08					

Table 3-6. Saturated Hydraulic Conductivity	
(Source: Ferguson and Debo, 1990)	

Material	Hydraulic Conductivity Kh				
Wateria	in/hr	ft/day			
Clay	0.02	0.04			

<u>Evaporation (E)</u> – Evaporation is from an open lake water surface. Evaporation rates are dependent on differences in vapor pressure, which, in turn, depend on temperature, wind, atmospheric pressure, water purity, and shape and depth of the basin. It is estimated or measured in a number of ways, which can be found in most hydrology textbooks. Pan evaporation methods are also used.

Table 3-7 presents pan evaporation rate distributions for a typical 12-month period based on pan evaporation information from one station in Bristol, TN. Figure 3-3 depicts a map of annual free water surface (FWS) evaporation averages for Tennessee based on a National Oceanic and Atmospheric Administration (NOAA) assessment done in 1982. FWS evaporation differs from lake evaporation for larger and deeper lakes, but can be used as an estimate of it for the type of structural water quality basins and wetlands being designed in northeast Tennessee. Total annual values can be estimated from this map and distributed in accordance with the percentages presented in Table 3-7.

Table 3-7. Pan Evaporation Rates - Monthly Distribution

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
3.1%	4.0%	7.1%	10.0%	11.9%	12.8%	12.7%	12.0%	10.4%	8.1%	4.6%	3.2%

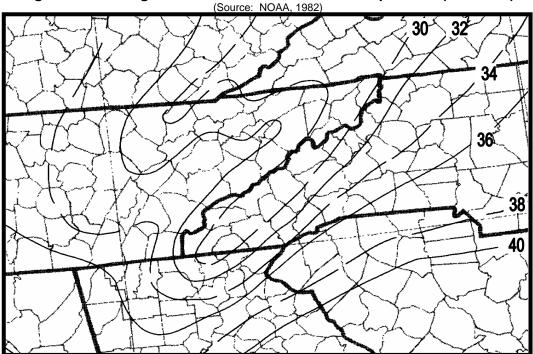


Figure 3-3. Average Annual Free Water Surface Evaporation (in inches)

<u>Evapotranspiration (E_t).</u> Evapotranspiration consists of the combination of evaporation and transpiration by plants. The estimation of E_t for crops is well documented and has become standard practice. However, the estimating methods for wetlands are not documented, nor are there consistent studies to assist the designer in estimating the wetland plant demand on water volumes. Literature values for various places in the United States vary around the free water surface lake evaporation values. Estimating E_t only becomes important when wetlands are being designed and emergent vegetation covers a significant portion of the basin surface. In these cases conservative estimates of lake evaporation should be compared to crop-based E_t estimates and a decision made. Crop-based E_t estimates can be obtained from typical hydrology textbooks or from the web sites mentioned above. A value of zero shall be assumed for E_t unless the wetland design dictates otherwise.

<u>Overflow (O_f) </u> – Overflow is considered as excess runoff, and in water balance design is either not considered since the concern is for average precipitation values, or is considered lost for all volumes above the maximum basin storage. Obviously, for long-term simulations of rainfall-runoff, large storms would play an important part in basin design.

Example 3-7. Water Balance Calculation for Basin

Bristol Farms, a 26-acre site in Bristol, is being developed along with an estimated 0.5-acre surface area basin. There is no baseflow. The desired basin volume to the overflow point is 2 acre-feet. Will the site be able to support the basin volume? From the basic site data we find that the site is 75% impervious with sandy clay loam soil.

Step 1: From Equation 3-5, Rv = 0.015 + 0.0092(75) = 0.71. With the correction factor of 0.9 the watershed efficiency is 0.64.

The annual lake evaporation from Figure 3-3 is about 30 inches.

For a sandy clay loam the infiltration rate is Kh = 0.34 ft/day (Table 3-6).

From a grading plan, it is known that 10% of the total basin area is sloped greater than 4:1.

Monthly rainfall for the local area was found from the website provided above.

	Value	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	Days per Month	31	28	31	30	31	30	31	31	30	31	30	31
2	Precip. (in)	3.52	3.4	3.91	3.23	4.32	3.89	4.21	3	3.08	2.3	3.08	3.39
3	Evap. Dist. (%)	3.1	4	7.1	10	11.9	12.8	12.7	12	10.4	8.1	4.6	3.2
4	R ₀ (ac-ft)	4.88	4.71	5.42	4.48	5.99	5.39	5.84	4.16	4.27	3.19	4.27	4.70
5	P (ac-ft)	0.15	0.14	0.16	0.13	0.18	0.16	0.18	0.13	0.13	0.10	0.13	0.14
6	E (ac-ft)	0.04	0.05	0.09	0.13	0.15	0.16	0.16	0.15	0.13	0.10	0.06	0.04
7	I (ac-ft)	5.01	4.52	5.01	4.85	5.01	4.85	5.01	5.01	4.85	5.01	4.85	5.01
8	Bal. (ac-ft)	-0.02	0.28	0.48	-0.37	1.01	0.54	0.85	-0.87	-0.58	-1.82	-0.51	-0.21
9	Run. Bal. (ac-ft)	0.00	0.28	0.76	0.39	1.40	1.94	2.00	1.13	0.55	0.00	0.00	0.00

Step 2: The table below shows summary calculations for this site for each month of the year.

Explanation of Table:

- 1. Days per month
- 2. Monthly precipitation from website is shown in Table 3-5.

- 3. Distribution of evaporation by month from Table 3-7.
- 4. Watershed efficiency of 0.64 x rainfall multiplied x site area and converted to ac-ft.
- 5. Precipitation volume directly into basin equals precipitation depth times basin surface area Pv=PA.
- 6. Evaporation volume equals percent evaporation by month (line 3) times 2.5 feet (Figure 3-3 converted to feet) multiplied by pond area (AC).
- 7. Infiltration volume equals the hydraulic conductivity (Table 36) times the pond area multiplied by the composite hydraulic gradient for the pond times the number of days in the month. $I_v = I$ (days per month).
- 8. Balance is Lines (4 + 5) minus lines (6 + 7).
- 9. Running Balance is accumulated total from line 8 keeping in mind that all volume above 2 acre-feet overflows and is lost in the trial design.

It can be seen that for this example the basin has potential to go dry in late fall. This can be remedied in a number of ways including compaction of the basin bottom, placement of a clay or geosynthetic liner, and modification of the basin geometry to decrease the surface area.

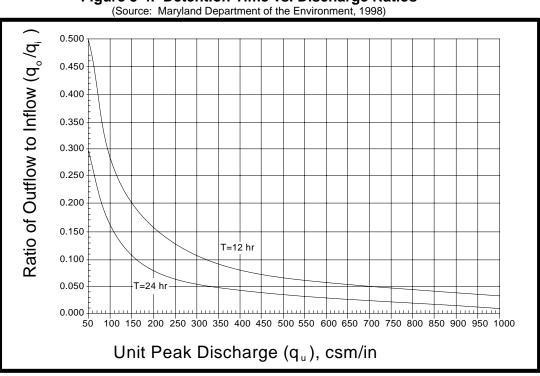
3.4 Channel Protection

3.4.1 Minimum Standard

Local ordinances require adherence to the channel protection standard for applicable new development or redevelopments prior to discharge from the site. This requirement shall be implemented in accordance with the **Channel Protection Standard** and associated policies presented in items 1 and 2 below.

- The runoff volume from the 1-year frequency, 24-hour storm, herein called the Channel Protection Volume (CPv), shall be captured and discharged over no less than a 24-hour period utilizing the design criteria and guidance provided in this manual. In the design of the channel protection control, the 24-hour release period shall be measured from the approximate centerof-mass of inflow to the approximate center-of-mass of outflow.
- 2. The local jurisdiction may approve downstream channel protection provided by an alternative approach than that stated above if sufficient hydrologic and hydraulic analysis shows that the alternative approach will offer adequate channel protection from erosion.

3.4.2 Estimation of the Channel Protection Volume


The Simplified SCS Peak Runoff Rate Calculation approach can be used for estimation of the channel protection volume (CPv) prior to storage facility design. For the calculation of CPv, this approach must be modified to determine the volume for a 1-year frequency, 24-hour duration design storm event. The calculation procedure is as follows.

- <u>Step 1.</u> The 1-year, 24-hour rainfall depth (P, in inches) is determined for the selected location. Consult your local jurisdiction to determine the amount of rainfall to utilize for this calculation.
- <u>Step 2.</u> A runoff curve number (CN) is then estimated using standard SCS Runoff Curve Number estimation techniques.
- <u>Step 3.</u> The CN value is used to determine the initial abstraction (I_a) from Table 3-4, and the ratio I_a/P is computed.
- <u>Step 4.</u> The accumulated runoff (Q_d , inches) can then be calculated using the SCS method.

$$Q_d = \frac{(P - I_a)^2}{(P - I_a) + S}$$
 $I_a = 0.2S$ $S = \frac{100}{CN} - 10$

- <u>Step 5.</u> Compute the drainage area time of concentration (t_c) for the post-development land use using standard SCS methods.
- <u>Step 6.</u> Use t_c with the ratio I_a/P to obtain the unit peak discharge, q_u, from Figure 3-2 for the Type II rainfall distribution. If the ratio I_a/P lies outside the range shown in the figure, either use the limiting values or use another peak discharge method.
- <u>Step 7.</u> Knowing q_u and T (extended detention time, minimum of 24 hours and maximum of 72 hours); the q_o/q_i ratio (peak outflow discharge/peak inflow discharge) can be estimated from Figure 3-4.

Figure 3-4. Detention Time vs. Discharge Ratios

- <u>Step 8.</u> V_s/V_r is then determined using the SCS detention basin routing formula of Equation 3-14 or using Figure 3-5. Equation 3-15 is suspect when the expression q_o/q_i approaches the limits of 0.1 and 0.8.
- **Equation 3-15**

$$\frac{V_s}{V_r} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

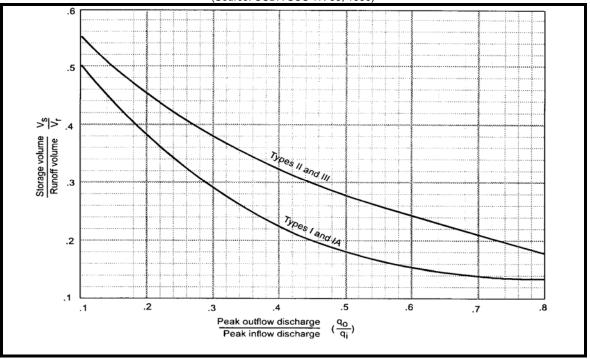
where:

- $\begin{array}{lll} V_s & = required \ storage \ volume \ (acre-feet) \\ V_r & = runoff \ volume \ (acre-feet) \\ q_o & = peak \ outflow \ discharge \ (cfs) \end{array}$
- q_i = peak inflow discharge (cfs)

<u>Step 9.</u> The required storage volume (CPv in this case) can then be calculated using Equation 3-16. To check the CPv estimate, the volume must be incorporated into a BMP design and the 1-year 24-hour storm routed through the BMP. The CPv is adequate when the 1-year 24-hour design storm is detained for 24 hours, measured from the centroid of the inflow hydrograph to the centroid of the outflow hydrograph.

$$=\frac{\left(\frac{V_s}{V_r}\right)Q_dA}{12}$$

Equation 3-16


where: Vs and Vr are defined above

Qd = the developed runoff depth for the design storm (inches)

A = total drainage area (acres)

 V_{s}

Example 3-8. Estimation of CPv

Estimate the CPv necessary for a 50-acre wooded watershed, which will be developed as follows:

Forest land - good cover (hydrologic soil group B) = 10 ac Forest land - good cover (hydrologic soil group C) = 10 ac Residential with 1/3 acre lots (hydrologic soil group B) = 20 ac Industrial development (hydrological soil group C) = 10 ac

Other data include the following: Total impervious area = 18 acres % of pond and swamp area = 0

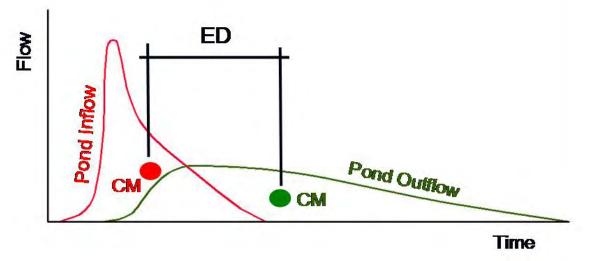
<u>Step 1</u> Determine the rainfall depth (P) for the 1-year 24-hour design storm for the local jurisdiction. The 1-year, 24 hour rainfall = 2.5 inches = P

Dev. #	Area (ac)	% Total	CN	Composite CN ¹
1	10	20	55	11
2	10	20	70	14
3	20	40	72	28.8
4	10	20	91	18.2
Total	50	100	-	72

Step 2 Determine the weighted runoff coefficient as in the table below.

 $1 - \text{Composite CN} = \frac{\% \text{ Total}}{\% \text{ CN}} * \text{CN}./100$

<u>Step 4</u> Calculate Qd for 1-year 24-hour storm using SCS equation Qd = (2.5-0.778)2/(2.5-0.778+5*0.778) = 0.53 inches


- Step 5 Calculate Tc. Utilizing standard methods for overland, shallow concentrated and channel flow: Tc = 0.35 hours (assumed)
- Step 6 Calculate unit discharge from Figure 3-2 using Tc and Ia/P from previous steps Unit discharge from Figure $3-2 = q_u(1-year) = 540 \text{ csm/in}$
- $\begin{array}{ll} \mbox{Step 7} & \mbox{Estimate channel protection volume (CPv = V_S)} \\ & \mbox{Knowing } q_u \, (1\mbox{-year}) = 540 \mbox{ csm/in from Step 6 and T (extended detention time of 24 hours),} \\ & \mbox{find } q_o/q_i \mbox{ from Figure 3-4.} \\ & \mbox{q}_o/q_i \mbox{ } = 0.035 \end{array}$
- $\begin{array}{lll} \mbox{Step 8} & \mbox{Estimate storage/runoff using Equation 3-15,} \\ & \mbox{V_s/V_r} &= 0.682 1.43(q_o/q_i) + 1.64(q_o/q_i)^2 0.804(q_o/q_i)^3$ \\ & \mbox{V_s/V_r} &= 0.682 1.43(0.035) + 1.64(0.035)^2 0.804(0.035)^3 = 0.63 \\ \end{array}$
- Step 9 The necessary detention volume is then calculated using Equation 3-16 $CPv = V_s \approx (Vs/Vr)*Qd*A/12 = (0.63)(0.53)(50)/12 \approx 1.39 \text{ ac-ft}$

3.4.3 The Design of Channel Protection Outlets

The previous example provides an estimate of the volume required for channel protection storage. In order for the downstream channel to be protected, an orifice must next be sized to accomplish the detention criteria. The purpose of channel protection outlets is to prevent the erosive channel-forming flows that occur during the 1 to 2 year storm. This purpose is accomplished by extending the detention of the 1-year 24-hour design storm to 24 hours. The detention time is measured from the centroid of the inflow hydrograph to the centroid of the outflow hydrograph as shown in Figure 3-6.

3.4.3.1 Channel Protection Outlet Sizing

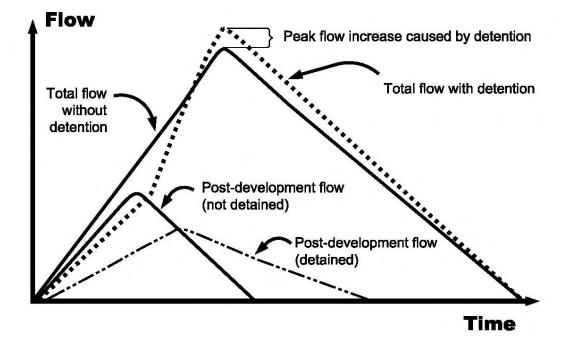
Channel protection outlets, then, must be sized using hydrograph routing techniques. The channel protection volume estimated in Section 3.4.2 will have a channel protection outlet placed at the bottom of it. The size of the outlet can only be estimated initially. Routing the 1-year 24-hour inflow hydrograph through the pond will provide an outflow hydrograph. If the centroid to centroid detention time is less than 24 hours, the channel protection orifice must be made smaller. The water quality orifice may preclude reaching the CPv 24 hour detention time, in which case, the water quality orifice must be made smaller. The water quality and channel protection orifices can be combined so long as both water quality and channel protection criteria are met.

3.5 Downstream Impact Analysis

3.5.1 Background

Local jurisdiction's stormwater design criteria may require the design to control peak discharges at the outlet of a site, such that the post-development peak discharge does not exceed the predevelopment peak discharge. Typically, this peak discharge control is achieved through construction of one or more on-site detention facilities. Peak discharge control does not always provide effective water quantity control from the site, and may actually exacerbate flooding problems downstream of the site. Moreover, master plans have shown that a development site's location within a watershed may preclude the requirement for overbank flood control from a particular site.

A major reason for negative impacts due to stormwater detention facilities involves the timing of the peak discharge from the site in relation to the peak discharges in the receiving stream and/or its tributaries. If detention structures are indiscriminately placed in a watershed without consideration of the relative timing of downstream peak discharges, the structural control may actually increase the peak discharge downstream. An example of this situation is presented in Figure 3-7, which shows a comparison of the total downstream flow on a receiving stream (after development) with and without detention controls. In Figure 3-7, the smaller dashed-dot and solid lines denote the runoff hydrograph for a development site with and without detention, respectively. These runoff hydrographs will combine with a larger runoff hydrograph of the receiving stream (not shown). The combined discharges from the site and receiving stream are shown in the larger solid and dashed lines.



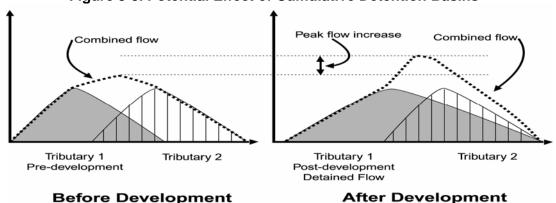

Figure 3-7. Potential Effect of On-Site Detention on Receiving Streams

Figure 3-7 conveys a possible consequence of detention. The post-development flow from the site is reduced as required by flood protection design criteria to result in the detained flow (the smaller dashed-dot hydrograph). However, the timing of the peak discharge for the detained post-development flow, while reduced in magnitude, corresponds more closely with the timing of the peak discharge of the receiving stream (not shown) than the peak discharge of the post-development flow that was not detained. Therefore, the combination of the detained flow with the flow in the receiving stream is actually higher than would occur if no detention were required, as shown in the larger dashed hydrograph. Hence, there is a peak flow increase that is caused by detention.

Poor peak discharge timing can have an even greater impact when one considers all the developments located in a watershed and the cumulative effects of increases in runoff volume and the duration of high volume runoff in the channel, as well as peak discharge timing. Even if peak discharges are handled effectively at the site level and immediately downstream, the longer duration of higher flows due to the increased volume from many developments located on or near a stream may combine with downstream tributaries and receiving streams to dramatically increase the downstream peak flows.

Figure 3-8 illustrates this concept. The figure shows the pre- and post-development hydrographs at the confluence of two tributaries. Development occurs, meets the local flood protection criteria (i.e., the post-development peak flow is equal to the pre-development peak flow at the outlet from the site), and discharges to Tributary 1. When the post-development detained flow from Tributary 1 combines with the first downstream tributary (Tributary 2), it causes a peak flow increase when compared to the pre-development combined flow. This is due to the increased volume and timing of runoff from Tributary 1, relative to the peak flow and timing in Tributary 2. In this case, the detention volumes on Tributary 1 would have to have been increased to account for the downstream timing of the combined hydrographs to mitigate the impact of the increased runoff volume.

Figure 3-8. Potential Effect of Cumulative Detention Basins

Potential problems such as those described above are quite common, but can be avoided through the use of a stormwater master plan and/or downstream analysis of the effects of a planned development. Studies have shown that if a developer is required to assess the impacts of a development downstream to the point where the developed property is 10% of the total drainage area, and there are no adverse impacts (i.e., stream peak discharge increases), then there is assurance that there will not be significant increases in flooding problems further downstream. For example, for a 10-acre site, the assessment would have to take place down to a point where the total accumulated drainage area is 100 acres.

While this assessment does require some additional labor on the part of the design engineer, it allows smart stormwater management within a watershed. The assessment provides the developer, the local jurisdiction and downstream property owners with a better understanding (and corresponding documentation) of the potential downstream impacts of development. In turn, this information identifies those developments for which waivers or reductions in the flood protection requirements may prove beneficial.

3.5.2 Minimum Standard

Policies pertaining to the downstream impact analysis, if required by the local jurisdiction, are listed below.

- 1. Downstream impact analysis shall be required for all developments and redevelopments for which a water quality management plan is required. The analysis shall determine if the proposed development or redevelopment causes an increase in peak discharge as compared to pre-development runoff rates for the same site, or has the potential to cause downstream channel and streambank erosion. This analysis must be done for all storm events that are required for peak flow control by the local jurisdiction. Peak flows must be analyzed at the outfall(s) of the site, and at each downstream tributary junction and each public or major private downstream stormwater conveyance structure to the point(s) in the stormwater system where the area of the portion of the site draining into the system is less than or equal to 10% of the total drainage area above that point.
- 2. If the downstream impact analysis shows that the development or redevelopment causes an increase in peak discharges, downstream flood protection shall be provided such that the calculated peak discharges for the locally specified storm events after development of the site are not greater than that which would result from the same duration storms in the same downstream analysis area prior to development or redevelopment. These criteria must be applied throughout the 10% downstream analysis area.
- 3. Downstream flood protection can be provided by downstream conveyance improvements and/or purchase of flow easements in lieu of peak discharge controls subject to prior approval

by the local jurisdiction and satisfaction of the following requirements:

- (1) Sufficient hydrologic and hydraulic analysis must be presented that shows that the alternative approach will offer adequate protection from downstream flooding for all potentially affected downstream property owners.
- (2) The applicant is responsible for submittal and approval of any necessary CLOMR prior to construction, and a LOMR upon completion of construction.
- (3) The applicant is responsible for all State and Federal permits that may be applicable to the site including TDEC NPDES and ARAP permits, US Army Corps of Engineers Section 404 permits, and TVA Section 26A permits.
- 4. Developments and redevelopments that do not cause an increase in peak discharges are not exempt from conformance with the minimum standards for water quality treatment (WQv) and channel protection (CPv), presented earlier in this chapter.
- 5. The downstream analysis should be performed after any WQv reductions for better site design practices have been taken into consideration in the calculation of peak discharges leaving the site. While there are no reductions for flood protection criteria, the use of better site design practices will inherently reduce runoff volumes and potentially reduce post-development peak discharges, both on-site and downstream of the site.
- 6. The data and results of the downstream analysis must be presented to the local jurisdiction as part of the water quality management plan.

Typical steps in the application of the ten-percent rule are:

- 1. Using a topographic map determine the lower limit of the "zone of influence" (i.e., the 10% point), and determine all 10% rule comparison points (at the outlet of the site and at all downstream tributary junctions or other points of interest).
- 2. Using a hydrologic model determine the pre-development peak discharges for the storms specified by the local jurisdiction and the timing of those peaks at each tributary junction beginning at the pond outlet and ending at the next tributary junction beyond the 10% point.
- 3. Change the site land use to post-development conditions and determine the post-development peak discharges and timing for the same storms. Design the structural control facility such that the post-development peak discharges from the site <u>for all storm events</u> do not increase the pre-development peak discharges at the outlet of the site and at each downstream tributary junction and each public or major private downstream stormwater conveyance structure located within the zone of influence.
- 4. If post-development conditions do increase the peak flow within the zone of influence, the structural control facility must be redesigned or conveyance improvements/flow easements may be allowed by the local jurisdiction (see item 3 in the previous section).

Example 3-9. Ten Percent Rule Example

Figure 3-9 illustrates the concept of the ten-percent rule for two sites in a watershed.

Site A is a development of 10 acres, all draining to a wet ED stormwater pond. Looking downstream at each tributary in turn, it is determined that the analysis should end at the tributary marked "120 acres." The 100-acre (10%) point is in between the 80-acre and 120-acre tributary junction points.

The designer constructs a simple HEC-1 (HEC-HMS) model of the 120-acre areas using single existing condition sub-watersheds for each tributary. Key detention structures existing in other tributaries

must be modeled. An approximate curve number is used since the *actual* peak flow is not the key for initial analysis; only the increase or decrease is important. The accuracy in curve number determination is not as significant as an accurate estimate of the time of concentration. Since flooding is an issue downstream, the pond is designed (through several iterations) until the peak flow does not increase at junction points downstream to the 120-acre point.

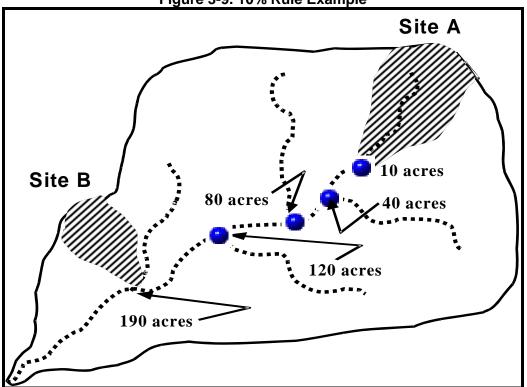


Figure 3-9. 10% Rule Example

Site B is located downstream at the point where the total drainage area is 190 acres. The site itself is only 6 acres. The first tributary junction downstream from the 10% point is the junction of the site outlet with the stream. The total 190 acres is modeled as one basin with care taken to estimate the time of concentration for input into the hydrologic model of the watershed. The model shows that a detention facility, in this case, will actually <u>increase</u> the peak flow in the stream.

3.6 References

Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.

Ferguson, B. and Debo, T. On-Site Stormwater Management. 1990.

- Knox County, Tennessee. Knox County Stormwater Management Manual Volume 2, Technical Guidance. 2006.
- NOAA. Evaporation Atlas for the Contiguous 48 United States. NOAA Technical Report NWS 33, 1982.
- Pitt, Robert. Small Storm Hydrology. Unpublished report. Department of Civil Engineering, University of Alabama at Birmingham, 1994.
- U. S. Department of Agriculture, Soil Conservation Service, Engineering Division, 1986. Urban Hydrology for Small Watersheds. Technical Release 55 (TR-55).
- Virginia Department of Conservation and Recreation. Virginia Stormwater Management Handbook, First Edition, 1999.

Table of Contents

CHAPTER 4 — DESIGN AND MAINTENANCE OF STRUCTURAL BMPS

4.1	Desigr	n Standar	ds Policy	4-1				
4.2	BMP D	Descriptio	n and Selection Information	4-1				
	4.2.1		Application BMPs					
	4.2.2	Limited Application BMPs						
	4.2.3							
	4.2.4	General	Application BMP Screening Process					
	4.2.5	Limited A	Application BMP Screening Process	4-12				
	4.2.6		Versus On-Line Structural BMPs					
	4.2.7	Using St	ructural Stormwater BMPs in Series	4-18				
		4.2.7.1	Use of Multiple Structural BMPs in Series	4-19				
	4.2.8	Referen	ices	4-23				
4.3	Gener	al Annlica	ation Water Quality BMP	4-25				
ч.0	4.3.1		ater Basins					
	4.5.1	4.3.1.1	General Description					
		4.3.1.2	Pollutant Removal Capabilities	<i>1_</i> 20				
		4.3.1.3	Planning and Design Standards					
		4.3.1.4	Design Procedures					
		4.3.1.5	Maintenance Requirements and Inspection Checklist					
		4.3.1.6	Example Schematics					
		4.3.1.7	Design Form					
		4.3.1.8	References					
		4.3.1.9	Suggested Reading					
	4.3.2		ional Dry Detention					
		4.3.2.1	General Description					
		4.3.2.2	Planning and Design Standards					
		4.3.2.3	Design Procedures					
		4.3.2.4	Maintenance Requirements and Inspection Checklist					
		4.3.2.5	Example Schematic					
		4.3.2.6	Design Form					
		4.3.2.7	References	4-56				
		4.3.2.8	Suggested Reading	4-56				
	4.3.3	Dry Exte	ended Detention Basins	4-57				
		4.3.3.1	General Description	4-58				
		4.3.3.2	Pollutant Removal Capabilities	4-58				
		4.3.3.3	Planning and Design Standards	4-58				
		4.3.3.4	Design Procedures					
		4.3.3.5	Maintenance Requirements and Inspection Checklist	4-63				
		4.3.3.6	Example Schematic	4-65				
		4.3.3.7	Design Form	4-66				

	4.3.3.8	References	4-68
	4.3.3.9	Suggested Reading	
4.3.4	Stormwa	iter Wetlands	
	4.3.4.1	General Description	4-70
	4.3.4.2	Stormwater Management Suitability	4-71
	4.3.4.3	Pollutant Removal Capabilities	
	4.3.4.4	Application and Site Feasibility Criteria	4-71
	4.3.4.5	Planning and Design Standards	
	4.3.4.6	Design Procedures	
	4.3.4.7	Maintenance Requirements and Inspection Checklist	4-81
	4.3.4.8	Example Schematics	
	4.3.4.9	Design Form	4-87
	4.3.4.10	References	4-89
	4.3.4.11	Suggested Reading	
4.3.5	Bioretent	tion Areas	
	4.3.5.1	General Description	
	4.3.5.2	Stormwater Management Suitability	
	4.3.5.3	Pollutant Removal Capabilities	
	4.3.5.4	Application and Site Feasibility Criteria	4-94
	4.3.5.5	Planning and Design Standards	
	4.3.5.6	Design Procedures	
	4.3.5.7	Maintenance Requirements and Inspection Checklist	
	4.3.5.8	Example Schematics	
	4.3.5.9	Design Form	
	4.3.5.10	References	
	4.3.5.11	Suggested Reading	
4.3.6		Sand Filters	
	4.3.6.1	General Description	
	4.3.6.2	Stormwater Management Suitability	
	4.3.6.3	Pollutant Removal Capabilities	
	4.3.6.4	Application and Site Feasibility Criteria	
	4.3.6.5	Planning and Design Standards	
	4.3.6.6	Design Procedures	
	4.3.6.7	Maintenance Requirements and Inspection Checklist	
	4.3.6.8	Example Schematics	
	4.3.6.9	Design Form	
	4.3.6.10	References	
407	4.3.6.11	Suggested Reading	
4.3.7		n Trench	
	4.3.7.1	General Description	
	4.3.7.2	Stormwater Management Suitability	
	4.3.7.3	Pollutant Removal Capabilities	
	4.3.7.4	Application and Site Feasibility Criteria	
	4.3.7.5	Planning and Design Standards	
	4.3.7.6 4.3.7.7	Design Procedures	
	4.3.7.7 4.3.7.8	Maintenance Requirements and Inspection Checklist	
		Example Schematics	
	4.3.7.9 4.3.7.10	Design Form References	
	4.3.7.10	1/2121211129	

	4.3.7.11	Suggested Reading	4-138
4.3.8	Enhance	d Swales	4-139
	4.3.8.1	General Description	4-140
	4.3.8.2	Stormwater Management Suitability	4-140
	4.3.8.3	Pollutant Removal Capabilities	4-141
	4.3.8.4	Application and Feasibility Criteria	4-141
	4.3.8.5	Planning and Design Standards	
	4.3.8.6	Design Procedures	
	4.3.8.7	Maintenance Requirements and Inspection Checklist	4-146
	4.3.8.8	Example Schematics	4-148
	4.3.8.9	Design Form	4-150
	4.3.8.10	References	4-151
	4.3.8.11	Suggested Reading	4-151
4.3.9	Filter Stri	p	4-153
	4.3.9.1	General Description	4-154
	4.3.9.2	Stormwater Management Suitability	4-154
	4.3.9.3	Pollutant Removal Capabilities	4-156
	4.3.9.4	Application and Feasibility Criteria	4-156
	4.3.9.5	Planning and Design Standards	4-156
	4.3.9.6	Design Example	
	4.3.9.7	Maintenance Requirements and Inspection Checklist	4-161
	4.3.9.8	References	
	4.3.9.9	Suggested Reading	
4.3.10		nannel	
	4.3.10.1	I	
	4.3.10.2	5	
	4.3.10.3	Pollutant Removal Capabilities	
	4.3.10.4	Application and Feasibility Criteria	
	4.3.10.5	Planning and Design Standards	
	4.3.10.6	Design Example	
	4.3.10.7	Maintenance Requirements and Inspection Checklist.	
	4.3.10.8	References	
	4.3.10.9		
4.3.11		Porous Paver Systems	
	4.3.11.1	General Description	
		Stormwater Management Suitability	
	4.3.11.3	Pollutant Removal Capabilities	
	4.3.11.4	Application and Feasibility Criteria	
	4.3.11.5	Planning and Design Standards	
	4.3.11.6	Maintenance Requirements and Inspection Checklist	
	4.3.11.7	References	
	4.3.11.8	Suggested Reading	
4.3.12		avement	
	4.3.12.1	General Description	
	4.3.12.2	0, ,	
	4.3.12.3	Pollutant Removal Capabilities	
	4.3.12.4	Application and Feasibility Criteria	
	4.3.12.5	Planning and Design Standards	
	4.3.12.6	Maintenance Requirements and Inspection Checklist	4-197

4.3.12.7	Example Schematics	4-199
	References	
	Suggested Reading	

4.4	Limited	Applicat	ion Water Quality BMP	4-202
	4.4.1	Organic F	Filter	4-203
		4.4.1.1	General Description	4-204
		4.4.1.2	Stormwater Management Suitability	4-204
		4.4.1.3	Pollutant Removal Capabilities	4-204
		4.4.1.4	Application and Site Feasibility Criteria	4-204
		4.4.1.5	Planning and Design Standards	4-205
		4.4.1.6	Design Procedures	4-209
		4.4.1.7	Maintenance Requirements and Inspection Checklist	4-213
		4.4.1.8	Example Schematic	4-215
		4.4.1.9	References	4-216
		4.4.1.10	Suggested Reading	4-216
	4.4.2	Undergro	und Sand Filter	
		4.4.2.1	General Description	4-218
		4.4.2.2	Stormwater Management Suitability	4-218
		4.4.2.3	Pollutant Removal Capabilities	4-219
		4.4.2.4	Application and Site Feasibility Criteria	4-219
		4.4.2.5	Planning and Design Standards	4-220
		4.4.2.6	Design Procedures	
		4.4.2.7	Maintenance Requirements and Inspection Checklist	4-227
		4.4.2.8	Example Schematics	4-229
		4.4.2.9	References	4-231
		4.4.2.10	Suggested Reading	4-231
	4.4.3	Submerg	ed Gravel Wetland	4-233
		4.4.3.1	General Description	4-234
		4.4.3.2	Stormwater Management Suitability	4-234
		4.4.3.3	Pollutant Removal Capabilities	4-234
		4.4.3.4	Application and Site Feasibility Criteria	4-234
		4.4.3.5	Planning and Design Standards	4-235
		4.4.3.6	Design Procedures	4-236
		4.4.3.7	Inspection and Maintenance Requirements	4-238
		4.4.3.8	Example Schematic	4-240
		4.4.3.9	References	4-241
		4.4.3.10	Suggested Reading	4-241
	4.4.4	Alum Tre	atment System	4-243
		4.4.4.1	General Description	4-244
		4.4.4.2	Stormwater Management Suitability	4-245
		4.4.4.3	Pollutant Removal Capabilities	
		4.4.4.4	Application and Site Feasibility Criteria	4-246
		4.4.4.5	Planning and Design Standards	4-246
		4.4.4.6	Inspection and Maintenance Requirements	4-247
		4.4.4.7	References	4-249
		4.4.4.8	Suggested Reading	
	4.4.5	Proprieta	ry Structural BMPs	4-251

	4.4.5.1	General Description	4-251
	4.4.5.2	Guidelines for Using Proprietary Systems	4-252
4.4.6	Undergro	bund Detention	
	4.4.6.1	General Description	4-254
	4.4.6.2	Pollutant Removal Capabilities	4-254
	4.4.6.3	Planning and Design Standards	4-254
	4.4.6.4	Design Procedures	
	4.4.6.5	Maintenance Requirements and Inspection Checklist	
	4.4.6.6	Example Schematics	4-259
	4.4.6.7	References	4-261
4.4.7	Oil-Grit (0	Gravity) Separator	4-263
	4.4.7.1	General Description	4-264
	4.4.7.2	Stormwater Management Suitability	4-264
	4.4.7.3	Pollutant Removal Capabilities	
	4.4.7.4	Application and Feasibility Criteria	4-265
	4.4.7.5	Planning and Design Standards	
	4.4.7.6	Design Example	
	4.4.7.7	Maintenance Requirements and Inspection Checklist	
	4.4.7.8	Example Schematics	4-273
	4.4.7.9	References	4-279
	4.4.7.10	Suggested Reading	
	4.4.7.11	Oil/Grit Separator Manufacturers	

Chapter 4 - List of Figures

FIGURE #	TITLE	Page #
Figure 4-1	Example of Off-Line versus On-Line Structural Controls	
Figure 4-2	Pipe Interceptor Diversion Structure	
Figure 4-3	Regulator	
Figure 4-4	Surface Channel Diversion Structure	
Figure 4-5	Generalized Stormwater Treatment Train	
Figure 4-6	Examples of Structural BMPs Used in Series	
Figure 4-7	Example Treatment Train – Residential Subdivision	
Figure 4-8	Example Treatment Train – Commercial Development	
Figure 4-9	Example Treatment Train – Commercial Development	
0	Stormwater Basin Examples	
	Typical Stormwater Basin Geometry Criteria	
	Typical Basin Outlet Structure	
	Schematic of a Standard Wet Basin	
	Schematic of a Wet Extended Detention Basin	
	Schematic of a Micropool Extended Detention Basin	
	Schematic of a Multiple Basin System	
	Schematic of a Dry Detention Basin	
	Schematic of a Dry Extended Detention Basin	
	Stormwater Wetland Examples	
Figure 4-20	Typical Wetland Facility Outlet Structure	
	Schematic of a Shallow Wetland	
	Schematic of an Extended Detention Shallow Wetland	
	Schematic of a Basin/Wetland System	
Q	Schematic of a Pocket Wetland	
	Bioretention Area Examples	
	Bioretention Area Applications	
	Schematic of a Typical Bioretention Area	
	Schematic of a Typical On-line Bioretention Area	
	Schematic of a Typical Off-line Bioretention Area	
	Schematic of a Typical Inlet Deflector	
	Example of a Surface Sand Filter	
0	Surface Sand Filter Volumes	
	Typical Sand Filter Media Cross Sections	
0	Surface Sand Filter Perforated Stand-Pipe	
•	Schematic of a Surface Sand Filter	
	Infiltration Trench Example	
	Schematic of an Infiltration Trench	
•	Observation Well Detail	
	Enhanced Swale Examples	
	Schematic of a Dry Swale	
	Schematic of a Wet Swale	
	Schematic of a Filter Strip (with Berm)	
	Typical Grass Channel	
	Typical Grass Channel (Plan and Profile Views)	
Figure 4-45	Examples of Modular Porous Pavers	4-176

Examples of Porous Paver Surfaces	4-178
Typical Modular Porous Paver System Applications	4-179
Modular Porous Pavement Layers	4-181
Schematic of Lateral Flow Barriers	4-182
Schematic of an Underdrain System	4-183
Porous Pavement Layers	4-193
Schematic of Lateral Flow Barriers	4-194
Schematic of an Underdrain System	4-195
Porous Pavement Installation	4-199
Typical Porous Pavement Applications	4-199
Organic Filter Volumes	
Surface Sand Filter Perforated Stand-Pipe	
Schematic of an Organic Filter	4-215
Example of an Underground Sand Filter	4-218
Underground (DC) Sand Filter Volumes	
Perimeter Sand Filter Volumes	
Typical Sand Filter Media Cross Sections	
Schematic of an Underground (DC) Sand Filter	
Schematic of a Perimeter (Delaware) Sand Filter	
Schematic of Submerged Gravel Wetland Systems	4-240
Settling Basin for an Alum Treatment System	4-244
Dosing/Injection Components of an Alum Treatment System	4-245
Example Underground Detention Pipe System	
Schematic of a Typical Underground Detention Vault	
Typical Size and Volume Distribution of Oil Droplets	
Typical Oil-Grit (Oil/Water) Separators	4-273
Schematic of an Example Gravity (Oil-Grit) Separator	4-278
	Typical Modular Porous Paver System Applications Modular Porous Pavement Layers Schematic of Lateral Flow Barriers Schematic of an Underdrain System Porous Pavement Layers Schematic of an Underdrain System Porous Pavement Installation Typical Porous Pavement Applications Organic Filter Volumes Surface Sand Filter Perforated Stand-Pipe Schematic of an Organic Filter Example of an Underground Sand Filter Underground (DC) Sand Filter Volumes Perimeter Sand Filter Volumes Typical Sand Filter Media Cross Sections Schematic of a Perimeter (Delaware) Sand Filter Schematic of a Dunderground (DC) Sand Filter Schematic of a Perimeter (Delaware) Sand Filter Schematic of a Dunderground Detention System Settling Basin for an Alum Treatment System Example Underground Detention Pipe System Schematic of a Typical Underground Detention Vault Typical Size and Volume Distribution of Oil Droplets Typical Oil-Grit (Oil/Water) Separators

Chapter 4 - List of Tables

TABLE #	TITLE	Page #
Table 4-1	Descriptions of General Application BMPs	4-2
Table 4-2	Descriptions of Limited Application BMPs	4-4
Table 4-3	Design Pollutant Removal Efficiencies (in %)	
	For Structural BMPs	4-5
Table 4-4	General Application BMP Screening Matrix –	
	Overall BMP Applicability	4-7
Table 4-5	General Application BMP Screening Matrix - Specific Criteria	4-10
Table 4-6	BMP Location and Permitting Checklist	4-11
Table 4-7	Limited Application BMP Screening Matrix	4-15
Table 4-8	Recommended Design Criteria for Stormwater Wetlands	4-74
Table 4-9	Sizing of Filter Strips for Pre-treatment	4-158
Table 4-10	Grass Channel Sizing Guidance	4-169

Chapter 4 - List of Equations

EQUATION #	TITLE	Page #
Equation 4.3.9.1	Discharge per foot of width of filter strip, cfs/ft (q)	4-157
Equation 4.3.9.2	Minimum filter strip width perpendicular to flow, ft (W _{fMIN})	4-157
Equation 4.3.9.3	Length of filter strip parallel to flow path, ft (Lf)	4-158
Equation 4.3.11.1	Maximum distance between cut-off membrane normal to	
	the flow, ft (L _{max})	4-181
Equation 4.3.12.1	Maximum distance between cut-off membrane normal to	
	the flow, ft (L _{max})	4-194
Equation 4.4.7.1	Upward rise velocity of petroleum droplet, ft/s (Vp)	4-266
Equation 4.4.7.2	Depth of Oil-Grit Separator, ft (D)	4-267
Equation 4.4.7.3	Width of Oil-Grit Separator, ft (W)	4-267
Equation 4.4.7.4	Length of Oil-Grit Separator, ft (L)	4-267
Equation 4.4.7.5	Allowable horizontal velocity, ft/s (V _H)	4-267
Equation 4.4.7.6	Total surface area of coalescing plates, sq-ft (Ap)	4-267
Equation 4.4.7.7	Number of plates required (N)	4-268

DESIGN AND MAINTENANCE OF STRUCTURAL BMPS

Structural stormwater best management practices (BMPs) are engineered facilities that are intended to treat stormwater runoff and/or mitigate the effects of increased stormwater runoff peak discharge, volume, and velocity due to urbanization. This chapter provides detailed descriptions and design specifications for the structural stormwater BMPs that can be used to address the city's minimum stormwater management standards outlined in Chapter 1 and the design criteria cited in Chapter 3.

In terms of the Integrated Site Design approach, a structural stormwater BMP, or a series of structural BMPs, must:

- Treat the Water Quality Volume (WQv); and
- Control the Channel Protection Volume (CPv);

4.1 Design Standards Policy

The State of Tennessee's NPDES Phase II regulation requires that regulated municipalities implement a post-construction stormwater treatment program for all new developments and redevelopments. To comply with this regulation, local governments require that stormwater runoff be treated for pollutants prior to discharge from the site. Further, the city policy established in Chapters 1 and 3 of this manual sets the minimum design standard for stormwater treatment as removal of 80% of the average annual post-development total suspended solids (TSS) load. The structural BMPs presented in this chapter, used alone or in series, can be used to meet this minimum design standard. For purposes of compliance with local and state regulations, it is presumed that developments and redevelopments are meeting the 80% TSS removal standard so long as water quality management systems are designed, constructed, and maintained in accordance with the design criteria and specifications discussed in this manual.

Therefore, the city requires that all of the structural BMPs presented in this section be designed, constructed and maintained in accordance with the criteria, standards, and specifications presented in this manual.

Proprietary, new, and other BMPs not included in this manual may be approved by the city for treatment of stormwater quality on a case-by-case basis provided that the conditions outlined in Chapter 2 of this manual are met.

4.2 BMP Description and Selection Information

The structural stormwater BMPs recommended in this manual have been placed into two categories, general application and limited application, based upon each generalized acceptance criteria set by the city. These categories are described below.

4.2.1 General Application BMPs

A listing of general application BMPs can be found in Table 4-1 below. The city will accept these BMPs for use with a wide variety of land uses and development types. General application BMPs have a demonstrated ability to treat the WQv and many are presumed to be able to achieve the 80% TSS removal standard when designed, constructed and maintained in accordance with recommended specifications. Several of the general application BMPs can also be designed to comply with other stormwater criteria, for downstream channel protection, and the locally regulated

maximum storm event. The city recommends that general application BMPs be utilized for the stormwater management facilities for a site wherever feasible and practical. A detailed discussion of each of the general application BMPs, as well as design criteria and procedures can be found later in this chapter.

Structural BMP	Description			
 Stormwater Basins Wet Basin Wet ED Basin Micropool ED Basin Multiple Basin Systems 	Stormwater basins are constructed stormwater retention basins that have a permanent pool (or micropool) of water. Runoff from each rain event is detained and treated in the pool. ED = Extended Detention. ED is the detention of stored runoff for a minimum of 24 hours.			
 Detention Basins Dry Detention Basin Dry ED Basin 	Dry detention basins and dry extended detention (ED) basins are surface facilities intended to provide for the temporary storage of stormwater runoff to reduce downstream water quantity impacts and will have to be combined with another BMP to achieve the 80% TSS removal goal.			
Stormwater Wetlands Shallow Wetland ED Shallow Wetland Basin/Wetland Systems Pocket Wetland 	Stormwater wetlands are constructed wetland systems used for stormwater management. Stormwater wetlands consist of a combination of shallow marsh areas, open water and semi-wet areas above the permanent water surface.			
Bioretention Areas	Bioretention areas are shallow stormwater basins or landscaped areas which utilize engineered soils and vegetation to capture, infiltrate and treat stormwater runoff. Runoff may be returned to the conveyance system, or allowed to partially infiltrate into the soil.			
 Sand Filters Surface Sand Filter Perimeter Sand Filter 	Sand filters are multi-chamber structures designed to treat stormwater runoff through filtration, using a sand bed as its primary filter media. Filtered runoff may be returned to the conveyance system, or allowed to partially infiltrate into the soil.			
Infiltration Trench	An infiltration trench is an excavated trench filled with stone aggregate used to capture and allow infiltration of stormwater runoff into the surrounding soils from the bottom and sides of the trench.			
Enhanced SwalesWQ Dry SwaleWet Swale	Enhanced swales are vegetated open channels that are explicitly designed and constructed to capture and treat stormwater runoff within dry or wet cells formed by check dams or other means.			
Biofilters Filter Strip Grass Channel 	Both filter strips and grass channels provide "biofiltering" of stormwater runoff as it flows across the grass surface. However, by themselves these controls cannot meet the 80% TSS removal performance goal. Consequently, both filter strips and grass channels should only be used as pretreatment measures or as part of a treatment train approach. Grass channels are open channel practices that are not designed specifically for water quality.			

Table 4-1. Descriptions of General Application BMPs

Structural BMP	Description		
Modular Porous Paver Systems and Porous Pavement/Concrete	Porous surfaces are permeable pavement surfaces with an underlying stone reservoir to temporarily store surface runoff before it infiltrates into the subsoil. These practices are considered source control BMPs rather than treatment BMPs. Areas where porous surfaces have been applied are included in the WQv calculations as pervious surfaces, rather than impervious surfaces. Porous concrete is the term for a mixture of course aggregate, portland cement and water that allows for rapid infiltration of water. Modular porous paver systems consist of open void paver units laid on a gravel subgrade. Both porous concrete and porous paver systems provide water quality and quantities benefits, but may have high workmanship and maintenance requirements.		

4.2.2 Limited Application BMPs

Limited application BMPs will be allowed only when the use of general application BMPs is not feasible because special site or design conditions prohibit their use and will be approved for use in the local municipalities on a site-by-site basis. In general, limited application BMPs are intended to address hotspot or specific land use constraints or conditions requiring pretreatment, and may have high installation costs or special maintenance requirements that may preclude their use for most general applications. Limited application BMPs are typically used for water quality treatment only and do not provide additional control for channel or flood protection. Limited application BMPs should be considered primarily for commercial, industrial or institutional developments.

Table 4-2 lists the limited application BMPs, along with the rationale for limited use. These structural BMPs are recommended for use with particular land uses and densities, to meet certain water quality requirements, for limited usage on larger projects, or as part of a stormwater treatment train. A detailed discussion of each of the limited application BMPs, as well as design criteria and procedures can be found in later in this chapter.

4.2.3 Pollutant Removal Capabilities

Research has shown that the use of the structural BMPs discussed in this chapter will have benefits for the removal of TSS and other pollutants (i.e., phosphorous, nitrogen, fecal coliform and heavy metals). The ability for both general and limited application BMPs to remove pollutants varies by structural BMP type and by pollutant type. Pollutant removal capabilities for a given BMP are based on a number of factors including the physical, chemical and/or biological processes that take place in the BMP and the design and sizing of the facility. In addition, pollutant removal efficiencies for the same BMP type and facility design can vary widely depending on the tributary land use and area, incoming pollutant concentration, rainfall pattern, time of year, maintenance frequency and numerous other factors.

Table 4-2. Descriptions of Limited Application BMPs				
Structural BMP	Description and Rationale for Limited Use			
Filtering PracticesOrganic Filter	Organic filters are surface sand filters where organic materials such as a leaf compost or peat/sand mixture are used as the filter media. These media may be able to provide enhanced removal of some contaminants, such as heavy metals and nutrients. Given their potentially high maintenance requirements, they should only be used in environments that warrant their use.			
Underground Sand Filter	Underground sand filters are sand filter systems located in an underground vault. These systems should only be considered for extremely high density or space-limited sites.			
Wetland SystemsSubmerged Gravel Wetlands	Submerged gravel wetlands systems use wetland plants in a submerged gravel or crushed rock media to remove stormwater pollutants. These systems should only be used in mid- to high- density environments where the use of other structural controls may be precluded. The long-term maintenance burden of these systems is uncertain.			
Chemical TreatmentAlum Treatment	Alum treatment provides for the removal of suspended solids from stormwater runoff entering a wet basin by injecting liquid alum into the stormwater system. Alum treatment should only be considered for large-scale projects where high water quality is desired and where other BMPs do not provide the level of pollutant removal required for the receiving water.			
 Proprietary Systems Commercial Stormwater BMPs 	Proprietary BMPs are manufactured structural control systems available from commercial vendors designed to treat stormwater runoff and/or provide water quantity control. Proprietary systems often can be used on small sites and in space-limited areas, as well as in pretreatment applications. However, proprietary systems are often more costly than other alternatives, may have high maintenance requirements, and often lack adequate independent performance data, particularly for use in local conditions.			
Gravity (oil-grit) Separator	Gravity separators, (also called hydrodynamic BMPs) use the movement of stormwater runoff through a specially designed structure to remove target pollutants. They are typically used on smaller impervious commercial sites and urban hotspots. These BMPs typically do not meet the 80% TSS removal performance goal, and therefore, should only be used as a pretreatment measure and as part of a treatment train approach.			

Table 4-2. Descriptions of Limited Application BMPs

Table 4-3 provides design removal efficiencies assigned to each of the general and limited application BMPs. It should be noted that these values are median pollutant reduction percentages for design purposes that have been derived from existing sampling data, modeling and research. A structural BMP design may be capable of exceeding these performances; however, the values in the table are considered median values that can be assumed to be achieved when the structural BMP is sized, designed, constructed and maintained in accordance with recommended specifications in this manual.

Where the pollutant removal capabilities of an individual structural stormwater BMP are not sufficient for a given site application, additional controls may be used in series in a "treatment train" approach. More detail on the use of stormwater BMPs in series is provided later in this chapter.

Table 4-3. Design Pollutant Remova	Efficiencies (in %	%) for Structural BMPs
------------------------------------	--------------------	------------------------

Structural BMP	TSS	Total P ¹	Total N ²	Fecal Coliform	Metals	
General Application Structural BMPs						
Stormwater Basins (Wet ED Basin, Micropool ED Basin, and Multiple Basin Systems)	80	55	30	70*	50	
Conventional Dry Detention Basin	10					
Dry Extended Detention Basin	60	35	25		25	
Stormwater Wetlands (Shallow Wetlands, ED Wetlands, Basin/Wetland System, Pocket Wetland)	80	45	30	70*	50	
Bioretention Areas	85	60	50		80	
Sand Filters	80	50	30	40	50	
Infiltration Trench	90	60	60	90	90	
Water Quality (WQ) Dry Swale	90	50	50		40	
Wet Swale	75	25	40		20	
Filter Strip	50	20	20		40	
Grass Channel ³	30	25	20		30	
Modular Porous Paver Systems and Porous Pavement/Concrete	**	**	**	**	**	
Limited Application Structural	Limited Application Structural BMPs					
Organic Filter	80	60	40	50	75	
Underground Sand Filter	80	50	25	40	50	
Submerged Gravel Wetland	80	50	20	70	50	
Alum Treatment	90	80	60	90	75	
Proprietary Systems	***	***	***	***	***	
Gravity (oil-grit) Separator	30	5	5			

Total phosphorus Total nitrogen 1

2

3 *

** ***

Refers to open channel practices not designed specifically for water quality. If no resident waterfowl population is present. These practices are source controls and are not designed as pollutant removal devices. The performance of specific proprietary commercial devices and systems must be provided by the manufacturer and should be verified by independent third-party sources and data.

Insufficient data to provide design removal efficiency. ---

4.2.4 Screening Process for General Application BMPs

Outlined below is a process used in the selection of general application BMPs. This process is intended to assist the site developer and design engineer in determining the most appropriate structural BMP for a development site, and to provide guidance on factors to consider in their location. The city's goal of 80% TSS removal is the primary factor in the selection process of BMPs or BMP treatment trains. Information on selection factors related to pollutants other than TSS are provided for informational purposes, and may be useful in the future depending upon local, state and federal water quality regulations at that time.

In general, the following four criteria should be evaluated in order to select the appropriate structural BMP(s) or group of BMPs for a development:

- stormwater treatment suitability;
- water quality performance;
- site applicability;
- implementation considerations.

In addition, for a given site, the following factors should be considered and any specific design criteria or restrictions need to be evaluated:

- physiographic factors;
- soils;
- special watershed or stream considerations.

Finally, environmental regulations that may influence the location of a structural BMP on site, or may require a permit, need to be considered.

Guidance on a selection process for comparing and evaluating various general application structural stormwater BMPs using two screening matrices and a list of location and permitting factors is presented below. These tools are provided to assist the design engineer in selecting the subset of structural BMPs that will meet the stormwater management and design objectives for a development site or project.

Step 1: Evaluate Overall Applicability

Through the use of Table 4-4, the site designer evaluates and screens the overall applicability of the full set of general application structural BMPs as well as the constraints of the site in question. The discussion following the table presents an explanation of the various screening categories and individual characteristics used to evaluate the structural BMPs.

Stormwater Management Suitability

The first columns of Table 4-4 examine the capability of each structural BMP option to provide water quality treatment, downstream channel protection and flood protection. A blank entry means that the structural BMP cannot or is not typically used to meet the aforementioned criteria. This does not necessarily mean that it should be eliminated from consideration, but rather is a reminder that more than one structural BMP may be needed at a site (e.g., a bioretention area used in conjunction with dry detention storage).

Ability to treat the Water Quality Volume (WQv). This indicates whether a structural BMP provides treatment of the WQv and provides the TSS reduction amount assigned to each BMP type.

		STORMWATER TREATMENT		WATER QUALITY		g Matrix – Overall BMP Applicability SITE APPLICABILITY									
STRUCTURAL BMP CATEGORY	STRUCTURAL BMP	SUITABILITY		PERFORMANCE*						IMPLEMENTATION CONSIDERATIONS					
		Water Quality	Channel Protection	Flood Protection	TSS / Sediment Removal Rate	Hotspot Application	Drainage Area (acres)	Space Req'd (% of tributary imp. Area)	Site Slope	Minimum Head Required	Depth to Water Table	Residential Subdivision Use	High Density / Ultra-Urban	Capital Cost	Maintenance Burden
	Wet Basin	~	✓	~	- 80%		25 min**			C to Q ft	2 feet, if hotspot or aquifer	✓		Low	Low
Stormwater Basins	Wet ED Basin	~	~	~			25 min	2-3%	15% max			~		Low	Low
	Micropool ED Basin	~	~	~			10 min**	_	15% max 6 to 8 ft	010011		~		Low	Moderate
	Multiple Basins	~	~	~			25 min**					~		Low	Low
Detention Basins	Extended Detention	~	~	~	60%		No min	4-5%	15% max		2 feet min	~		Low	Low
Detention Dasins	Conventional Detention	~	~	~	10%		No min	4-5%	15% max		2 feet min	~		Low	Low
	Shallow Wetland	~	~	~	80%					3 to 5 ft 2 feet, if hotspot or aquifer	~		Moderate	Moderate	
Stormwater Wetlands	Shallow ED Wetland	~	~	~			25 min	3-5%	8% max		~		Moderate	Moderate	
	Basin/Wetland	~	~	~				3-576		6 to 8 ft	~~~~	~		Moderate	Moderate
	Pocket Wetland	~	~				5 min			2 to 3 ft	below WT	~	~	Moderate	High
Bioretention	Bioretention Areas	~	•		85%		5 max***	5%	6% max	5 ft	2 feet	~	~	Moderate	Moderate
Sand Filters	Surface Sand Filter	~	•		80%	✓	10 max***	2-3%	6% max	5 ft	2 feet		~	High	High
Salid Filters	Perimeter Sand Filter	~	•		0078	✓	2 max***	2-376	076 1114	2 to 3 ft	2 1001		~	High	High
Infiltration	Infiltration Trench	✓	•		90%		5 max	2-3%	6% max	1 ft	4 feet	~	✓	High	High
Enhanced Swales	Dry Swale	✓	•		90%		5 max	10-20%	4% max	3 to 5 ft	2 feet	✓		Moderate	Low
Ennanced Swales	Wet Swale	✓	•		75%		5 max	10-20 /0	4 /0 IIIAX	1 ft	below WT	~		High	Low
Biofilters	Filter Strip	✓			50%		2 max	20-25%	2-6% max		2-4 feet	✓		Low	Moderate
Dioiiiters	Grass Channel	~			30%		5 max	10-20%	4% max		2 feet	~		Low	Low
Modular Porous Paver Systems and Porous Pavement/Concrete	Porous Pavers, Pavement and Concrete		~		**		5 max	varies	5%	2 ft	4 feet	~	~	Moderate	High

 Table 4-4. General Application BMP Screening Matrix – Overall BMP Applicability

✓ This BMP meets suitability criteria.

• This BMP can be incorporated into the structural control in certain situations.

* TSS pollutant removal rates must be used for design purposes. See Volume 1 Chapter 3 for guidance on calculating the % TSS removal for a development site.

** Smaller drainage areas may be approved by the local municipality with adequate water balance and anti-clogging device.

*** The use of this BMP for larger drainage areas may be approved by the local municipality if design calculations show that the BMP will achieve its design intentions given a larger drainage area.

Ability to provide Channel Protection (CPv). This indicates whether the structural BMP can be used to provide the extended detention of the CPv. The presence of a check mark indicates that the structural control can be used to meet CPv requirements. A diamond indicates that the structural control may be sized to provide channel protection in certain situations, for instance on small sites.

Ability to provide Flood Protection. This indicates whether a structural BMP can be used to meet flood protection criteria. The presence of a check mark indicates that the structural control can be used to provide peak reduction of the locally regulated storm event.

Relative Water Quality Performance

The second group of columns in Table 4-4 provides an overview of the pollutant removal performance of each structural control option, when designed, constructed and maintained according to the criteria and specifications in this manual.

Ability to provide TSS Removal. This column indicates the capability of a structural BMP to remove TSS from runoff.

Ability to accept Hotspot Runoff. This last column indicates the capability of a structural BMP to treat runoff from designated hotspots. Hotspots are land uses or activities with higher potential pollutant loadings. Examples of hotspots might include: gas stations, convenience stores, marinas, public works storage areas, vehicle service and maintenance areas, commercial nurseries, and auto recycling facilities. A check mark indicates that the structural BMP may be used on hotspot site, however it may have specific design restrictions. Please see Section 4.3 for the specific design criteria of the structural BMP for more details.

Site Applicability

The third group of columns in Table 4-4 provides an overview of the specific site conditions or criteria that must be met for a particular structural BMP to be suitable. In some cases, these values are recommended values or limits that can be exceeded or reduced with proper design or depending on specific circumstances. Refer to the specific criteria section of the structural BMP in Section 4.2 for more details.

Drainage Area. This column indicates the approximate minimum or maximum drainage area that is considered suitable for the structural BMP. The local municipality may approve exceptions to the drainage area maximum or minimum depending on the site conditions and the structural BMP(s) being proposed. The drainage areas indicated for basins and wetlands should not be considered inflexible limits, and may be increased or decreased depending on water availability (baseflow or groundwater), the mechanisms employed to prevent outlet clogging, or design variations used to maintain a permanent pool (e.g., liners).

Space Required (Space Consumed). This comparative index expresses how much space a structural BMP typically consumes at a site in terms of the approximate area required as a percentage of the area draining to the control.

Slope. This column evaluates the effect of slope on the structural BMP. Specifically, the slope restrictions refer to how flat the area where the facility is installed must be and/or how steep the contributing drainage area or flow length can be.

Minimum Head. This column provides an estimate of the minimum elevation difference needed at a site (from the inflow to the outflow) to allow for gravity operation within the structural BMP.

Water Table. This column indicates the minimum depth to the seasonally high water table from the bottom or floor of a structural BMP.

Implementation Considerations

The last group of columns of Table 4-4 provides additional considerations for the applicability of each structural BMP option.

Residential Subdivision Use. This column identifies whether or not a structural BMP is suitable for typical residential subdivision development (not including high-density or ultraurban areas).

Ultra-Urban. This column identifies those structural BMPs that are appropriate for use in very high-density (ultra-urban) areas, or areas where space is a premium.

Construction Cost. The structural BMPs are ranked according to their relative construction cost per impervious acre treated as determined from cost surveys.

Maintenance. This column assesses the relative maintenance effort needed for a structural stormwater BMP, in terms of three criteria: frequency of scheduled maintenance, chronic maintenance problems (such as clogging) and reported failure rates. It should be noted that all structural BMPs require routine inspection and maintenance.

Step 2: Specific Criteria

Table 4-5 provides an overview of various design criteria and specifications, or exclusions for a structural BMP that may be present due to a site's general physiographic character, soils, or location in a watershed with special water resources considerations.

Physiographic Factors

Three key factors to consider are low-relief, high-relief, and karst terrain. In local areas, low relief (very flat) areas and high relief (steep and hilly) areas are found throughout. Karst and major carbonaceous rock areas are found throughout portions of the local area. Special geotechnical testing requirements may be needed in karst areas. The city should be consulted to determine if a project is subject to terrain constraints.

- Low relief areas need special consideration because many structural BMPs require a hydraulic head to move stormwater runoff through the facility.
- High relief areas may limit use of some structural BMPs that need flat or gently sloping areas to settle out sediment or to reduce velocities. In other cases high relief may impact embankment heights to the point that a structural BMP becomes infeasible.
- Karst areas can limit the use of some structural BMPs as the infiltration of polluted waters directly into underground streams found in karst areas may be prohibited. In addition, ponding areas may not reliably hold water in karst areas.

Table 4-5. General Application BMP Screening Matrix – Specific Criteria									
STRUCTURAL	PHYS	SOILS							
BMP	Low Relief	High Relief	Karst						
Stormwater Basins	Limit maximum normal pool depth to about 4 feet (dugout) Providing basin drain can be problematic	Embankment height restrictions	Require poly or clay liner Max ponding depth Geotechnical tests	"A" soils may require basin liner "B" soils may require infiltration testing					
Detention Basins	*	Embankment height restrictions	Require poly or clay liner Max ponding depth Geotechnical tests	"A" soils may require basin liner "B" soils may require infiltration testing					
Stormwater Wetlands	*	Embankment height restrictions	Require poly-liner Geotechnical tests	"A" soils may require basin liner					
Bioretention & Sand Filters	Several design variations will likely be limited by low head	*	Use poly-liner or impermeable membrane to seal bottom	Clay or silty soils may require pretreatment					
Infiltration	Minimum distance to water table of 2 feet	Maximum slope of 6% Trenches must have flat bottom	Generally not allowed	Infiltration rate > 0.5 inch/hr					
Enhanced Swales	Generally feasible however slope <1% may lead to standing water in dry swales	Often infeasible if slopes are 4% or greater	*	*					
Biofilters (Filter Strips & Grass Channels)	*	*	*	*					
Modular Pavers/Porous Pavement	*	Maximum slope of 5%	*	Underdrain system required for C and D soils					

* - These BMPs typically have no limiting factors or constraints for physiographic factors or soils.

<u>Soils</u>

The key evaluation factors are based on an initial investigation of the Natural Resources Conservation Service (NRCS) hydrologic soils groups at the site. Note that more detailed geotechnical tests are usually required for infiltration feasibility and during design to confirm permeability and other factors.

Additionally, the design of structural stormwater controls is fundamentally influenced by the nature of the downstream water body that will be receiving the stormwater discharge. In some cases,

higher pollutant removal or environmental performance is needed to fully protect aquatic resources and/or human health and safety within a particular watershed or receiving water. Special design criteria for a particular structural control or the exclusion of one or more controls may need to be considered within these watersheds or areas. An important watershed factor to consider is the protection of drinking water sources, wellheads and surface reservoirs. Wellhead protection areas that recharge existing public water supply wells present a unique management challenge. The key design constraint is to prevent possible groundwater contamination by preventing infiltration of hotspot runoff. At the same time, recharge of unpolluted stormwater is encouraged to maintain flow in streams and wells during dry weather. Watersheds that deliver surface runoff to a public water supply reservoir or impoundment are a special concern also. Depending on the treatment available at the water intake, it may be necessary to achieve a greater level of pollutant removal for the pollutants of concern, such as bacteria pathogens, nutrients, sediment or metals. One particular management concern for reservoirs is ensuring that stormwater hotspots are adequately treated so that they do not contaminate drinking water.

Step 3: Location and Permitting Considerations

In the last step, a site designer assesses the physical and environmental features at the site to determine the optimal location for the selected structural BMP or group of BMPs. Table 4-6 provides a condensed summary of current restrictions as they relate to common site features that may be regulated under local, state or federal law. These restrictions fall into one of three general categories:

- Locating a structural BMP within an area that is expressly prohibited by law.
- Locating a structural BMP within an area that is strongly discouraged, and is only allowed on a case-by-case basis. Local, state and/or federal permits may be needed, and the applicant will need to supply additional documentation to justify locating the BMP within the regulated area.
- Locating a BMP based upon setbacks from a site feature or features.

This checklist is only intended as a general guide to location and permitting requirements as they relate to siting of stormwater structural BMPs. The city advises that the appropriate permitting agency be consulted if any of the site features listed in Table 4-6 are encountered on the development or redevelopment site.

Site Feature and Regulatory Agency	General Location and Permitting Guidance
Jurisdictional Wetlands (Waters of the U.S)	Jurisdictional wetlands should be delineated prior to siting structural control.
U.S. Army Corps of Engineers Section 404 Permit	 Use of natural wetlands for stormwater quality treatment is contrary to the goals of the Clean Water Act and should be avoided. Stormwater should be treated prior to discharge into a natural wetland.
City of Kingsport Engineering Department	 Structural BMPs may also be restricted in buffer zones, although they may be utilized as a non-structural filter strip (i.e., accept sheet flow). Justification must be provided that no practical upland treatment alternatives exist for wetland impacts by structural BMPs.
	 Where practical, excess stormwater flows should be conveyed away from jurisdictional wetlands or as sheet flow towards the wetland.

Table 4-6. BMP Location and Permitting Checklist

Site Feature and Regulatory Agency	General Location and Permitting Guidance
Stream Channels (Waters of the U.S) U.S. Army Corps of Engineers Section 404 Permit	 All Waters of the U.S. (streams, basins, lakes, etc.) should be delineated prior to design. Waters of the U.S. should not be used for stormwater quality treatment. In-stream basins for stormwater quality treatment are highly discouraged. Stormwater should be treated prior to discharging into Waters of the
TDEC City of Kingsport Engineering Department	 U.S. Justification must be provided that no practical upland treatment alternatives exist for stream impacts by structural BMPs. Temporary runoff storage preferred over permanent pools. Implement measures that reduce downstream warming.
Sinkholes TDEC City of Kingsport Engineering Department Wellhead Protection Zones	The City may require additional BMPs to prevent flooding or additional information to verify structural integrity.
TDEC	 Infiltration BMPs may be prohibited due to proximity to wellhead protection zones for public water supplies. TDEC required setbacks for public water systems categories 1-4 will be enforced.
100 Year Floodplains City of Kingsport Engineering Department	 Grading and fill for structural control construction is generally discouraged within the ultimate 100 year floodplain, as delineated by FEMA flood insurance rate maps, FEMA flood boundary and floodway maps, or as determined by the local municipality. Fill that alters the conveyance and storage capacity of the natural floodplain is prohibited in the flood fringe one-half the linear distance between the floodway line and the 100-year floodplain line.
Water Quality Buffers City of Kingsport Engineering Department	 Structural BMPs are prohibited in the inner zone of buffers on streams and wetland buffers.
Utilities Local utilities	 Call appropriate utility to locate existing utilities prior to design. Note the location of proposed utilities to serve development. Structural BMPs are discouraged within utility easements or rights- of-way for public or private utilities.
Roads City of Kingsport Engineering Department TDOT	 Approval must also be obtained for any stormwater discharges to a Local Municipal or state-owned conveyance channel.
Structures and Property Lines City of Kingsport	 Consult the Chapter 4 of the City of Kingsport's Stormwater Management Manual for structural BMP setbacks from structures. Recommended setbacks for each structural BMP group are provided in the performance criteria in this manual.
Septic Drainfields TDEC	 Consult TDEC. Recommended setback is a minimum of 50 feet from drain field edge.
Water Wells City of Kingsport Water Department TDEC	 100-foot setback for stormwater infiltration. 50-foot setback for all other structural controls.

4.2.5 Limited Application BMP Screening Process

Outlined below is a screening process for limited application BMPs designed to assist the site designer and design engineer in the evaluation of the performance and applicability of the various limited application BMPs. Through the use of Table 4-7, the site designer can evaluate and screen the list of limited application structural BMPs to determine if a particular BMP or set of BMP(s) is appropriate.

As with the general application BMPs, the site designer assesses the physical and environmental features at the site to determine the optimal location for the selected BMP(s) or group of BMPs using Table 4-7 (Location and Permitting Checklist).

Evaluation Criteria

The following are the details of the various screening categories and individual characteristics used to evaluate the structural BMPs listed in Table 4-7.

Water Quality Treatment

% TSS Reduction. This column indicates the pollutant removal value assigned to each BMP type. If the BMP has a value of less than 80% TSS, then the BMP must be used in a treatment train with other BMPs to meet the overall weighted TSS reduction goal.

Site Applicability

The next two columns in Table 4-7 provide an overview of the specific site conditions or criteria that must be met for a particular limited application structural BMP to be suitable. Please see the specific criteria for each BMP provided in Section 4.3 for more details.

Drainage Area. This column indicates the approximate minimum or maximum drainage area that is considered suitable for the structural BMP.

Space Required (Space Consumed). This comparative index expresses how much space a structural BMP typically consumes at a site in terms of the approximate area required as a percentage of the impervious area draining to the control.

Implementation Considerations

The last group of columns in Table 4-7 provides additional considerations for the applicability of each structural BMP option.

Residential Subdivision. A check mark in this column identifies whether or not a structural control is suitable for typical residential subdivision development (not including high-density or ultra-urban areas).

High Density / Ultra-Urban. A check mark in this column identifies those structural controls that are appropriate for use in very high-density (ultra-urban) areas, or areas where space is a premium.

Capital Cost. The structural controls are ranked according to their relative construction cost per impervious acre treated as determined from cost surveys.

Maintenance Burden. This column assesses the relative maintenance effort needed for a structural stormwater control, in terms of three criteria: frequency of scheduled maintenance, chronic maintenance problems (such as clogging) and reported failure rates. It should be noted that all structural BMPs require routine inspection and maintenance.

Commercially Manufactured Systems Available? This column indicates if a structural control is available as a pre-manufactured commercial product from a vendor.

4.2.6 Off-Line Versus On-Line Structural BMPs

Structural stormwater controls are designed either as "off-line" or "on-line" stormwater quality treatment controls. Examples of off-line and on-line BMPs are presented in Figure 4-1.

Off-line structural BMPs provide stormwater treatment (or other control) away from the flowpath of the runoff, and therefore, are typically designed only to receive a specified discharge rate (the water quality peak discharge) or volume. After the design runoff flow has been treated and/or controlled it is returned to the conveyance system. In contrast, on-line facilities, such as a

stormwater treatment channel, typically provide stormwater control within the flowpath of the runoff. Because of this, on-line facilities often must be able to handle the entire range of design storm discharges, up to the locally regulated storm event. Techniques and calculation methods for proper sizing of off-line BMPs are presented in Chapter 3 of this manual.

A flow regulator (e.g., diversion structure, flow splitter, etc.) is used to direct stormwater to off-line structural BMPs. Examples of flow regulators are shown in Figures 4-2 through 4-4 beginning on page 4-17.

City of Kingsport Stormwater Management Manual

WATER OITE ADDUCTOR DRUTTY										
	STRUCTURAL BMP	QUALITY	SITE APPI	LICABILITY	IMPLEMENTATION CONSIDERATIONS					
STRUCTURAL BMP CATEGORY		% TSS Reduction	Drainage Area (acres)	Space Req'd (% of tributary imp. Area)	Residential Subdivision Use	High Density / Ultra-Urban	Capital Cost	Maintenance Burden	Commercially Manufactured Systems Available?	
Filtering Practices	Organic Filter	80	10 max**	2-3%		✓	High	High		
	Underground Sand Filter	80	5 max	None		~	High	High	Yes	
Wetland Systems	Submerged Gravel Wetland	80	5 max**	2-3%		~	High	High		
Porous	Porous Concrete	*	5 max	Varies		1	Medium	High		
Surfaces ¹	Modular Porous Paver Systems	*	5 max	Varies	~	~	High	High	Yes	
Chemical Treatment	Alum Treatment System	90	25 min	None	~	~	High	High		
Proprietary Systems	Commercial Stormwater Controls*	***	***	***	***	***	***	***	Yes	
Separator Units	Oil/Grit Oil/Water Gravity	30	1 max	***		~	Medium	High	Yes	

Table 4-7. Limited Application BMP Screening Matrix

Meets suitability criteria \checkmark

These practices are source controls and are not designed as pollutant removal devices. Drainage area can be larger in some instances *

**

The application, performance and maintenance requirements of specific commercial devices and systems must be provided by the manufacturer and should be verified by independent third-party sources and data ***

1 Porous surfaces provide water quantity benefits by reducing the effective impervious area

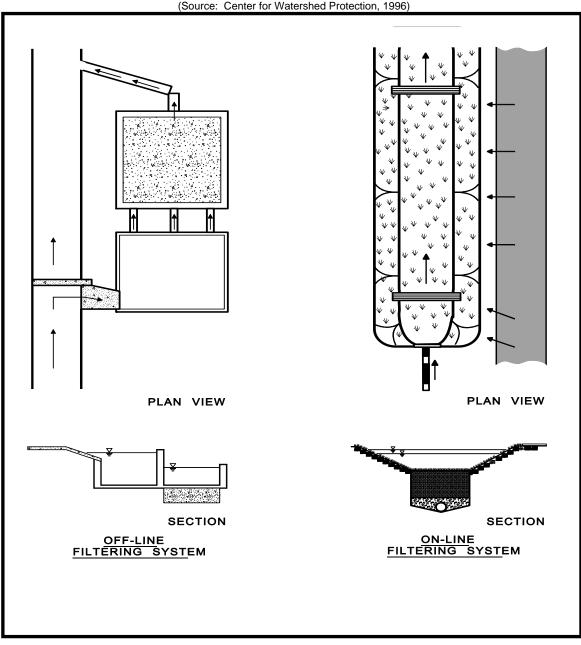


Figure 4-1. Example of Off-Line versus On-Line Structural Controls (Source: Center for Watershed Protection, 1996)

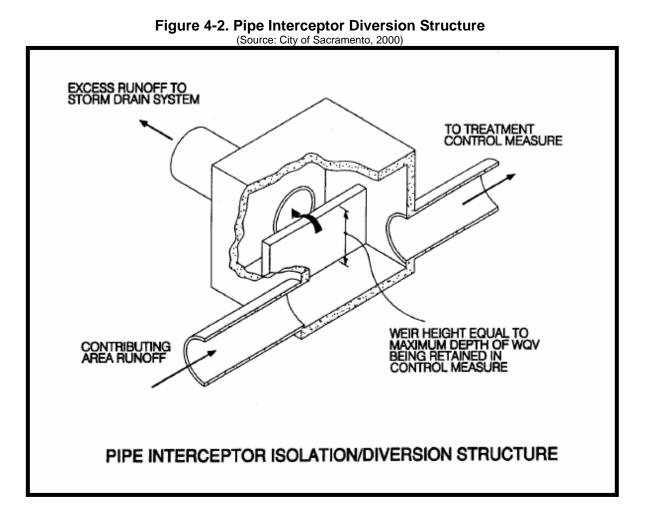
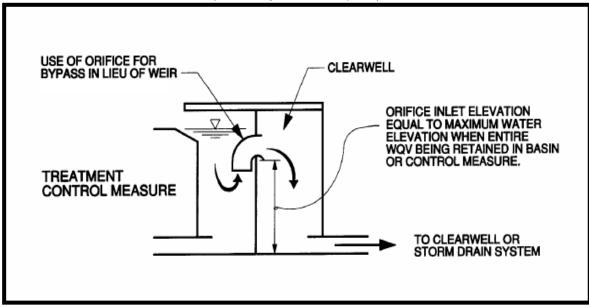



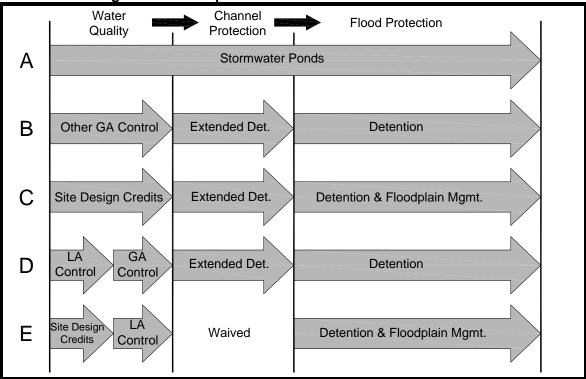
Figure 4-3. Regulator (Source: City of Sacramento, 2000)

4.2.7 Using Structural Stormwater BMPs in Series

The minimum stormwater management standards are an integrated planning and design approach whose components work together to limit the adverse impacts of urban development on downstream waters and riparian areas. This approach is sometimes called a stormwater "treatment train", where two or more structural (and sometimes non-structural) BMPs work in series to treat and control stormwater runoff. The calculation of % TSS removal for BMPs in series is discussed in detail in Chapter 3.

When considered comprehensively, a treatment train consists of all the design concepts and nonstructural and structural BMPs that work to attain water quality and quantity goals. This is illustrated in Figure 4-5, and is described below.

<u>Runoff and Load Generation</u> – The initial part of the "train" is located at the source of runoff and pollutant load generation, and consists of better site design and pollution prevention practices that reduce runoff and stormwater pollutants.


<u>Pretreatment</u> – The next step in the treatment train consists of pretreatment measures. These measures typically do not provide sufficient pollutant removal to meet the 80% TSS reduction goal, but do provide calculable water quality benefits that may be applied towards meeting the WQv treatment requirement. These measures include:

- The use of stormwater better site design practices and site design credits to reduce the generation of stormwater runoff and thereby reducing the WQv;
- Limited application BMPs that provide pretreatment; and
- Pretreatment facilities such as sediment forebays on General Application BMPs.

<u>Primary Treatment and/or Quantity Control</u> – The last step is primary water quality treatment and/or quantity (channel protection, overbank flood protection, and/or extreme flood protection) control. This is achieved through the use of general or limited application BMPs, or detention facilities. It should be noted that controls installed to reduce the runoff load and to provide pretreatment can affect the size of the primary treatment control.

4.2.7.1 Use of Multiple Structural BMPs in Series

Many combinations of structural BMPs in series may exist for a site. Figure 4-6 provides a number of hypothetical examples of structural BMPs, that when used in a treatment train, can satisfy the city's stormwater design criteria for water quality treatment, channel protection, overbank flooding and extreme flooding. In Figure 4-6, GA indicates General Application BMPs, LA indicates Limited Application BMPs.

Referring to Figure 4-6 by line letter:

- **A**. One general application BMP, stormwater basins, can be used as a stand-alone to meet all the design criteria.
- B. Other general application (GA) BMPs (bioretention, sand filters, infiltration trench and enhanced swale) are typically used in combination with detention controls to meet the WQv, CPv, and the locally regulated storm event criteria. The detention facilities are located downstream from the water quality controls either on-site or combined into a regional or neighborhood facility.
- C. Line C indicates the condition where an environmentally sensitive large lot neighborhood (discussed in Chapter 5) has been developed that can be designed so as to waive the water quality treatment requirement altogether. However, detention controls may still be required for downstream channel protection and locally regulated peak flow control.
- D. Where a limited application (LA) structural BMP does not meet the 80% TSS removal criteria, another downstream structural control must be added. For example, an urban hotspot land use may be fit or retrofit with devices adjacent to parking or service areas designed to remove oil and grease and may also serve as pretreatment devices removing the coarser fraction of sediment. One or more downstream structural controls is then used to meet the full 80% TSS removal goal, and well as water quantity control.
- E. In Line E site design credits have been employed to partially reduce the water quality volume requirement. In this case, for a smaller site, a well designed and tested Limited Application structural control provides adequate TSS removal while a dry detention basin handles the locally regulated flooding criteria. For this location, direct discharge to a large stream and local downstream floodplain management practices have eliminated the need for channel protection volume.

The combinations of structural stormwater BMPs are limited only by the need to employ measures of proven effectiveness and meet local regulatory and physical site requirements. Figures 4-7, 4-8 and 4-9, illustrate the application of the treatment train concept for: a moderate density residential neighborhood, a small commercial site, and a large shopping mall site, respectively.

In Figure 4-7 rooftop runoff drains over grassed yards to backyard grass channels. Runoff from front yards and driveways reaches roadside grass channels. Finally, all stormwater flows to a micropool ED stormwater basin.

A gas station and convenience store is depicted in Figure 4-8. In this case, the decision was made to intercept hydrocarbons and oils using a commercial gravity (oil-grit) separator located on the site prior to draining to a perimeter sand filter for removal of finer particles and TSS. Flood protection is provided by a regional stormwater control downstream.

Figure 4-9 shows an example treatment train for a commercial shopping center. In this case, runoff from rooftops and parking lots drains to a depressed parking lot, perimeter grass channels, and bioretention areas. Slotted curbs are used at the entrances to these swales to better distribute the flow and to settle out the very coarse particles at the parking lot edge for sweepers to remove. Runoff is then conveyed to a wet ED basin for additional pollutant removal and channel protection. Flood protection is provided through parking lot detention.

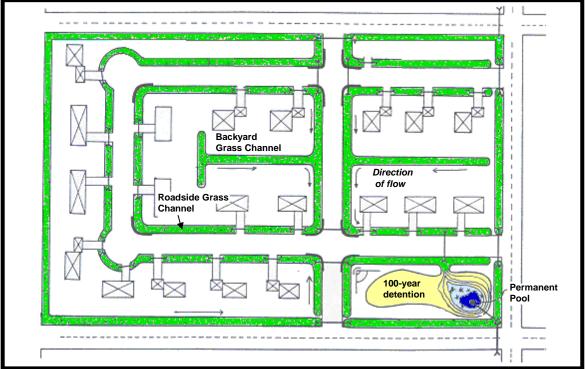
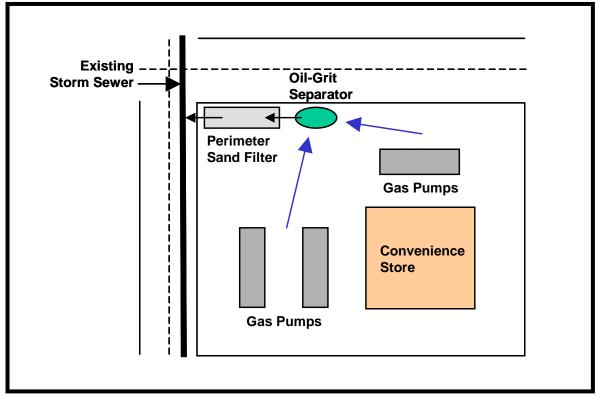



Figure 4-8. Example Treatment Train – Commercial Development #1

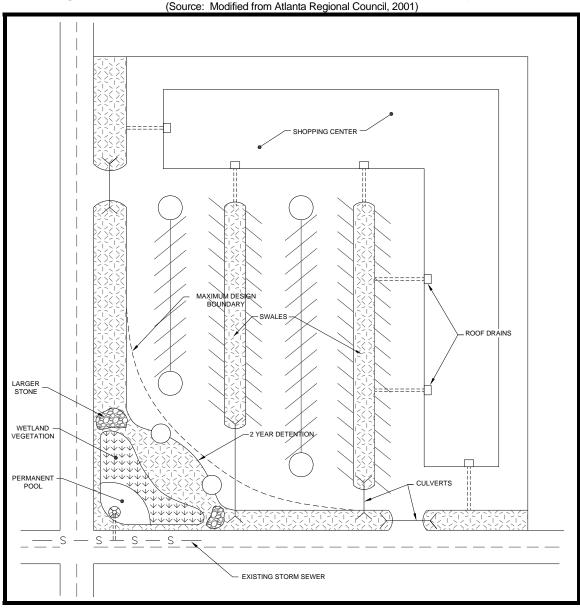


Figure 4-9. Example Treatment Train – Commercial Development #2 (Source: Modified from Atlanta Regional Council, 2001)

4.2.8 References

AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.

Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.

Center for Watershed Protection. *Design of Stormwater Filtering Systems*. Prepared for the Chesapeake Research Consortium 1996.

City of Sacramento Department of Utilities. *Guidance Manual for On-Site Stormwater Quality Control Measures.* 2000.

This page left intentionally blank

General Application Water Quality BMP

4.3.1 Stormwater Basins

Description: A constructed stormwater basin that has a permanent pool (or micropool). Runoff from each rain event is detained and treated in the pool primarily through settling and biological uptake mechanisms.

KEY CONSIDERATIONS

FEASIBILITY GUIDELINES:

- Minimum contributing drainage area of 25 acres; 10 acres for micropool ED basin.
- Requires approximately 2 to 3% of the contributing drainage area.
- Underlying soils of hydrologic groups C or D are typically adequate to maintain a permanent pool. Hydrologic soil groups A and B may require a basin liner.
- Can be used on sites that have a slope no greater than 15% upstream of the basin.
- Six to eight feet of elevation difference is needed from inflow to outflow.
- There are additional design requirements for areas with underlying aquifers or hotspot areas.

ADVANTAGES / BENEFITS:

- Moderate to high removal rate of urban pollutants.
- High community acceptance if aesthetics are maintained.
- Opportunity for wildlife habitat.

DISADVANTAGES / LIMITATIONS:

- Potential for thermal impacts/downstream warming.
- Dam height restrictions for high relief areas.
- Basin drainage can be problematic for low relief terrain.

MAINTENANCE REQUIREMENTS:

- Remove debris from inlet and outlet structures.
- Maintain side slopes / remove invasive vegetation.
- Monitor sediment accumulation and remove periodically.

STORMWATER MANAGEMENT APPLICABILITY

Stormwater Quality:	Yes
Channel Protection:	Yes
Detention/Retention:	Yes

Accepts hotspot runoff: Yes, but two feet of separation distance required to water table when used in hotspot areas

COST CONSIDERATIONS

Land Requirement:	Med - High
Capital Cost:	Low
Maintenance Burden:	Low

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	Yes

Commercial/Industrial Use: Yes

POLLUTANT REMOVAL

Total Suspended Solids: 80%

4.3.1.1 General Description

Stormwater basins (also referred to as retention basins, wet basins, or wet extended detention basins) are constructed stormwater retention basins that have a permanent (dead storage) pool of water throughout the year. They can be created by excavating an already existing natural depression or through the construction of embankments.

In a stormwater basin, runoff from each rain event is detained and the water quality volume (WQv) is treated in the pool through gravitational settling and biological uptake until it is displaced by runoff from the next storm. The permanent pool also serves to protect deposited sediments from resuspension. Above the permanent pool level, additional temporary storage (live storage) is provided for runoff quantity (i.e., peak discharge and/or volume) control if required by local regulations. The upper stages of a stormwater basin can be designed to provide extended detention for downstream channel protection volume, as well as conventional detention for peak discharge control.

Stormwater basins are among the most cost-effective and widely used stormwater practices. Stormwater basins are generally applicable to most types of new development and redevelopment, and can be used in both residential and nonresidential areas. Basins can also be used for regional applications (i.e., controlling runoff from more than one developed site). A well-designed and landscaped basin can be an aesthetic feature on a development site when planned and located properly. However, limitations on available land may preclude their use for retrofit applications or high-density/ultra urban sites.

There are several variations of stormwater basin design, the most common of which include the wet basin, the wet extended detention basin, and the micropool extended detention basin. In addition, multiple stormwater basins can be placed in series or parallel to increase total suspended solids (TSS) removal efficiency or meet site design constraints. Figure 4-10 shows a number of examples of stormwater basins. Descriptions of each basin type are provided below the figure.

Wet Basin

Micropool Extended Detention Basin

Wet Extended Detention Basin

Multiple Basin System

Wet Basin - Wet basins are stormwater basins constructed with a permanent (dead storage) pool of water equal to the WQv. Stormwater runoff displaces the water already present in the pool. Temporary storage (live storage) can be provided above the permanent pool elevation for larger flows.

- Wet Extended Detention (ED) Basin A wet extended detention basin is a wet basin where the WQv is split evenly between the permanent pool and extended detention (ED) storage provided above the permanent pool. During storm events, water is detained above the permanent pool and released over 24 hours. This design has similar pollutant removal to a traditional wet basin, but consumes less space.
- **Micropool Extended Detention (ED) Basin** The micropool extended detention basin is a variation of the wet ED basin where only a small "micropool" is maintained at the outlet to the basin. The outlet structure is sized to detain the WQv for 24 hours. The micropool prevents resuspension of previously settled sediments and also prevents clogging of the low flow orifice.
- **Multiple Basin System** A multiple basin system consists of constructed facilities that provide water quality and quantity volume storage in two or more cells. The additional cells can create longer pollutant removal pathways and improved downstream protection.

4.3.1.2 Pollutant Removal Capabilities

Basins treat incoming stormwater runoff through physical, biological, and chemical processes. The primary removal mechanism is gravitational settling of particulates, organic matter, metals, bacteria and organics as stormwater runoff resides in the basin. Another mechanism for pollutant removal is uptake by algae and wetland plants in the permanent pool, particularly of nutrients. Volatilization and chemical activity also work to break down and eliminate a number of other stormwater contaminants such as hydrocarbons.

All of the stormwater basin design variations are presumed capable of removing at least 80% of the total suspended solids load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the specifications provided in this manual. The TSS removal performance can be reduced by poor design, construction or maintenance.

Additionally, research has shown that use of stormwater basins will have benefits beyond the removal of TSS, such as the removal of other pollutants (i.e. phosphorous, nitrogen, fecal coliform and heavy metals) as well, which is useful information should the pollutant removal criteria change in the future.

For additional information and data on pollutant removal capabilities for stormwater basins, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.stormwatercenter.net</u> and the International Stormwater Best Management Practices Database at <u>www.bmpdatabase.org</u>.

4.3.1.3 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of a stormwater basin facility. Stormwater basins that are not designed to these standards will not be approved. Consult with the local municipal engineering department to determine if there are any variations to these criteria or additional standards that must be followed.

A. LOCATION AND SITING

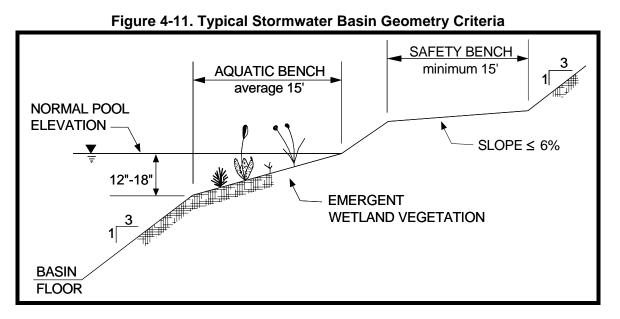
- Stormwater basins must have a minimum contributing drainage area of 25 acres or more for a wet basin or wet ED basin to maintain a permanent pool. For a micropool ED basin, the minimum drainage area is 10 acres. The use of a stormwater basin for a smaller drainage area may be considered when water availability can be confirmed (such as from a groundwater source or areas that typically have a high water table). In such situations, calculation of a water balance for the basin may be required. Water balance calculations are presented in Chapter 3 of this manual. It is important that basins that serve smaller drainage areas have an adequate anti-clogging device provided for the basin outlet.
- It is strongly recommended that stormwater basins be located where the topography allows for maximum runoff storage at minimum excavation or embankment construction costs. When locating a stormwater basin, the site designers should also consider the location and use of other site features, such as buffers and undisturbed natural areas, and should attempt to aesthetically blend the facility into the adjacent landscape.

- Stormwater basins shall not be located on unstable slopes or slopes greater than 15%.
- Stormwater basins shall not be located in a stream or any other navigable waters of the United States, including natural (i.e., not constructed) wetlands. Where an appeal or variance of this policy is desired, the property owner must obtain coverage under a Section 404 permit under the Clean Water Act and/or an Aquatic Resource Alteration Permit (ARAP) and provide proof of such coverage with the site development plans on which the basin design is presented.
- Each stormwater basin shall be placed in a water quality easement that is recorded with the deed. The water quality easement shall be defined at the outer edge of the safety bench, or a minimum of 15 feet from the normal water pool elevation (measured perpendicular from the pool elevation boundary) if a safety bench is not included in the basin design. Minimum setback requirements for the easement shall be as follows unless otherwise specified by local municipal regulations:
 - From a public water system well TDEC specified distance per designated well category
 - From a private well 50 feet; if the well is down gradient from a hotspot land use, as defined in this manual, then the minimum setback is 250 feet
 - From a septic system tank/leach field 50 feet
- The minimum setback for habitable structures from the water quality easement shall be 15 feet. The first floor elevation (FFE) for any structure adjacent to the basin shall have an elevation no lower than 1 foot above the top of the berm.
- All utilities shall be located outside of the water quality easement.

B. GENERAL DESIGN

- A stormwater basin shall consist of the following elements, designed in accordance with the specifications provided in this section.
 - (1) Permanent pool of water;
 - (2) A sediment forebay at each basin inlet (unless the inlet provides less than 10% of the total inflow to the basin);
 - (3) Overlying zone in which runoff control volumes are stored;
 - (4) Shallow littoral zone (aquatic bench) along the edge of the permanent pool that acts as a biological filter;
 - (5) An emergency spillway;
 - (6) Maintenance access;
 - (7) Safety bench (if basin side slopes are 4:1 or greater); and,
 - (8) Appropriate native landscaping.

C. PHYSICAL SPECIFICATIONS / GEOMETRY


In general, basin designs are unique for each site and application. However, there are a number of geometric ratios and limiting depths for basin design that must be observed for adequate pollutant removal, ease of maintenance, and improved safety.

- Permanent pool volume shall be sized as follows:
 - Standard wet basins: 100% of the water quality treatment volume (1.0 X WQv);
 - Wet ED basins: 50% of the water quality treatment volume (0.5 X WQv);
 - Micropool ED basins: Approximately 0.1 foot per impervious acre (4356 ft³).
- The pretreatment storage volume is part of the total WQv design requirement and may be subtracted from the WQv for permanent pool sizing. See Part D below for more information.

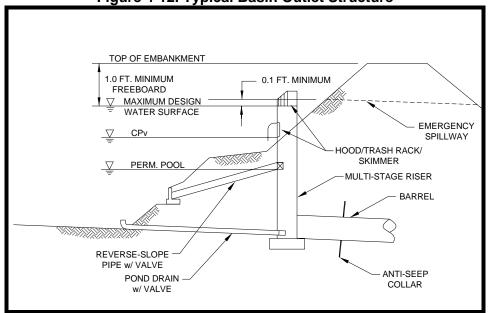
- Proper geometric design is essential to prevent hydraulic short-circuiting (unequal distribution of inflow), which results in the failure of the basin to achieve adequate levels of pollutant removal. The minimum length-to-width ratio permitted for the permanent pool shape is 1.5:1, and should ideally be greater than 3:1 to avoid short-circuiting. In addition, basins should be wedge-shaped when possible so that flow enters the basin and gradually spreads out, improving the sedimentation process. Baffles, basin shaping or islands can be added within the permanent pool to increase the flow path.
- The maximum depth of the permanent pool shall not exceed 8 feet to avoid stratification and anoxic conditions. Greater depths may be approved in the event that measures are taken that will eliminate the possibility of such conditions and safety precautions are adequately considered. The minimum depth for the permanent pool should be 3 to 4 feet. Deeper depths near the outlet will result in cooler bottom water discharges from the basin, which may mitigate downstream thermal effects caused by discharges of warm stormwater runoff.
- Side slopes shall not exceed 3:1 (horizontal to vertical) on one side of the basin to facilitate access for maintenance and repair. The remainder of the basin shall have side slopes no steeper than 2:1 although 3:1 is preferred. Benching of the slope (see safety bench in Figure 4-11) is required for embankments greater than 10 feet in height and having greater than a 3:1 side slope. Riprapprotected embankments shall be no steeper than 2:1.
- The perimeter of all deep pool areas (4 feet or greater in depth) shall be surrounded by two benches: safety and aquatic. For large basins, the safety bench shall extend no less than 15 feet outward from the normal water edge to the toe of the basin side slope. The slope of the safety bench shall not exceed 6%. The requirements for a safety bench may be waived if basin side slopes are 4:1 or gentler. The aquatic bench shall have an average width of 15 feet, and shall extend inward from the normal pool edge and shall have a maximum depth of 18 inches below the normal pool water surface elevation (see Figure 4-11).
- The contours and shape of the permanent pool should be irregular to provide a more natural landscaping effect.

D. PRETREATMENT / INLETS

- Each basin shall have a sediment forebay or equivalent upstream pretreatment. A sediment forebay is designed to remove incoming sediment from the stormwater flow prior to dispersal in a larger permanent pool. The forebay shall consist of a separate cell, formed by an acceptable barrier. A forebay must be provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the basin. In some design configurations, the pretreatment volume may be located within the permanent pool.
- The sediment forebay shall be sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep. The pretreatment storage volume is part of the total WQv design requirement and may be subtracted from the WQv for permanent pool sizing.

- A fixed vertical sediment depth marker shall be installed in the forebay to measure sediment deposition over time. The bottom of the forebay may be hardened (e.g., using concrete, paver blocks, etc.) to make sediment removal easier.
- Inflow channels shall be stabilized with flared riprap aprons, or the equivalent. Inlet pipes to the basin can be partially submerged. Exit velocities of discharges from the forebay to the basin must be non-erosive.

E. OUTLET STRUCTURES


- Flow control from a stormwater basin is typically accomplished with the use of a riser and barrel. The riser is a vertical pipe or inlet structure that is attached to the base of the basin with a watertight connection. The outlet barrel is a horizontal pipe attached to the riser that conveys flow under the embankment (see Figure 4-12). The riser shall be located within the basin embankment for maintenance access, safety and aesthetics.
- A number of outlets at varying depths in the riser provide internal flow control for routing of the WQv and CPv, and for peak discharge control (i.e., detention). The number of orifices can vary and is usually a function of the basin design.

For example, a wet basin riser configuration is typically comprised of a channel protection (CPv) outlet (usually an orifice) and one or more outlets (often slots or weirs) for peak discharge control to comply with local detention requirements (e.g., control of the post-development 10-year peak discharge to pre-development conditions). The channel protection orifice is sized to release the channel protection storage volume over a 24-hour period. Since the water quality volume is fully contained in the permanent pool, no orifice sizing is necessary for this volume. As runoff from a water quality event enters the wet basin, it simply displaces that same volume through the channel protection orifice. Thus an off-line wet basin providing <u>only</u> water quality treatment can use a simple overflow weir as the outlet structure.

In the case of a wet ED basin or micropool ED basin, there is generally a need for an additional outlet (usually an orifice) that is sized to pass the extended detention water quality volume that is surcharged on top of the permanent pool. Flow will first pass through this orifice, which is sized to release the water quality ED volume in 24 hours. The preferred design is a reverse slope pipe attached to the riser, with its inlet submerged 1 foot below the elevation of the permanent pool to prevent floatables from clogging the pipe and to avoid discharging warmer water at the surface of the basin. The next outlet is sized for the release of the channel protection storage volume. The outlet (often an orifice) invert is located at the maximum elevation associated with the extended detention

water quality volume and is sized to release the channel protection storage volume over a 24-hour period. The final orifice invert is located at the extreme flood elevation.

Figure 4-12. Typical Basin Outlet Structure

Alternative hydraulic control methods to an orifice can be used and include the use of a broadcrested, rectangular, V-notch, or proportional weir, or an outlet pipe protected by a hood that extends at least 12 inches below the normal pool.

- The water quality outlet (if the design is for a wet ED or micropool ED basin) and channel protection outlet shall be fitted with adjustable gate valves or another mechanism that can be used to adjust detention time.
- Higher flows that must be controlled as part of the local municipality's detention requirements (e.g., Qp₂, through Qp₁₀₀) pass through openings or slots protected by trash racks further up on the riser.
- After entering the riser, flow is conveyed through the barrel and is discharged downstream. Anti-seep collars shall be installed on the outlet barrel to reduce the potential for pipe or embankment failure.
- Riprap, plunge pads or pools, or other energy dissipators shall be placed at the outlet of the barrel to prevent scouring and erosion. If a basin outlet discharges immediately to a channel that carries dry weather flow (i.e., a stream), care shall be taken to minimize disturbance along the downstream channel, and to reestablish streamside vegetation in the shortest possible distance.
- Each basin shall have a bottom drain pipe with an adjustable valve that can completely or partially drain the basin within 24 hours.
- The basin drain shall be sized one pipe size greater than the calculated design diameter. The drain valve is typically a handwheel activated knife or gate valve. Valve controls shall be located inside of the riser at a point where they: (a) will not normally be inundated; and (b) can be operated in a safe manner.

F. EMERGENCY SPILLWAY

• An emergency spillway shall be included in the stormwater basin design, sized to safely pass the locally regulated peak event. The spillway prevents basin water levels from overtopping the embankment and causing structural damage to the embankment. The emergency spillway shall be located so that downstream structures will not be impacted by spillway discharges.

• A minimum of 1 foot of freeboard shall be provided, measured from the top of the water surface elevation for the extreme flood to the lowest point of the dam embankment, not counting the emergency spillway.

G. MAINTENANCE ACCESS

- A minimum 20' wide maintenance right-of-way or easement shall be provided to the basin from a driveway, public road or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.
- The maintenance access shall extend to the forebay, safety bench, riser, and outlet, and, to the extent feasible, be designed to allow vehicles to turn around.
- Access to the riser shall be provided by lockable manhole covers, and manhole steps within easy reach of valves and other controls.

H. SAFETY FEATURES

- A safety bench shall be provided for embankments greater than 10 feet in height and having greater than a 3:1 side slope. For large basins, the safety bench shall extend no less than 15 feet outward from the normal water edge to the toe of the basin side slope. The slope of the safety bench shall not exceed 6%.
- All embankments and spillways shall be designed to TDEC rules and regulations as applied to the Safe Dams Act of 1973 (see Appendix H), where applicable.
- The property owner may consider fencing the basin for the purpose of safety management.
- All outlet structures shall be designed so as not to permit access by children. Property owners are encouraged to post warning signs near the basin to prohibit swimming and fishing in the facility.

I. LANDSCAPING

- Aquatic vegetation can play an important role in pollutant removal in a stormwater basin. In addition, vegetation can enhance the appearance of the basin, stabilize side slopes, serve as wildlife habitat, and can temporarily conceal unsightly trash and debris. Therefore, wetland plants should be encouraged in a basin design, along the aquatic bench (fringe wetlands), the safety bench and side slopes (ED basins), and within shallow areas of the pool itself. The best elevations for establishing wetland plants, either through transplantation or volunteer colonization, are within 6 inches (plus or minus) of the normal pool elevation. More information on wetland plants can be found at the following websites:
 - <u>http://wetlands.fws.gov/</u>
 - http://www.npwrc.usgs.gov/resource/plants/floraso/species.htm
- Woody vegetation shall not be planted on the embankment or allowed to grow within 15 feet of the toe of the embankment and 25 feet from the principal spillway structure.
- Fish such as *Gambusia* can be stocked in a basin to aid in mosquito prevention.
- A fountain or aerator may be used for oxygenation of water in the permanent pool and to aid in mosquito breeding prevention.
- Water quality buffers, as defined and described in Chapter 6 of this manual, are not required for stormwater basins that are constructed for the purpose of stormwater quality or quantity control. However, it should be noted that vegetated buffers can be utilized for water quality treatment and can result in a volume credit that reduces the WQv. The criteria for the vegetated buffer credit are presented in Chapter 5 of this manual.

J. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

There are a number of additional site specific design criteria and issues (listed below) that must be considered in the design of a stormwater basin.

Physiographic Factors - Local terrain design constraints:

- Low Relief Maximum normal pool depth is limited; providing the basin drain can be problematic.
- <u>Karst</u> Requires poly or clay liner to sustain a permanent pool of water and protect aquifers; limits on ponding depth; geotechnical tests may be required.
- <u>Soils</u> Hydrologic group "A" soils generally require a basin liner; group "B" soils may require infiltration testing.

Wellhead Protection Areas

- Reduce potential groundwater contamination in wellhead protection areas by preventing infiltration of runoff from hotspot areas, or provide pretreatment of this runoff for the target pollutants that may discharge from the land use.
- Wellhead protection may require liner for type "A" and "B" soils.
- A minimum of two (2) to four (4) feet separation distance of the basin from water table shall be provided.

4.3.1.4 Design Procedures

In general, site designers should perform the following design procedures when designing a stormwater basin.

Step 1. Compute runoff control volumes

Calculate WQv, CPv, and pre- and post-development peak discharges and runoff volumes. The calculation of WQv and CPv is presented in Chapter 3 of this manual. Consult local regulations for peak discharge control (i.e., detention) requirements.

Step 2. Determine if the development site and conditions are appropriate for a stormwater basin

Consider the planning and design standards in sections 4.3.1.3.

Step 3. Confirm additional design criteria and applicability

Consider any special site-specific design conditions/criteria from subsection 4.3.1.3-J. Check with the local municipal engineering department, TDEC, or other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply to the site.

Step 4. Determine pretreatment volume

A sediment forebay is provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the basin. The forebay should be sized to contain 0.1 inch per impervious acre (363 ft^3) of contributing drainage and should be 4 to 6 feet deep. The forebay storage volume counts toward the total WQv requirement and may be subtracted from the WQv for subsequent calculations.

Step 5. Determine permanent pool volume (and water quality ED volume)

Wet Basin: Size permanent pool volume to 1.0 WQv less any forebay storage volume.

Wet ED Basin: Size permanent pool volume to 0.5 WQv less any forebay storage volume. Size extended detention volume to 0.5 WQv less any forebay storage volume.

Micropool ED Basin: Size permanent pool volume at 0.1 foot per impervious acre (4356 ft³) less any forebay storage volume. Size extended detention volume to remainder of WQv.

<u>Step 6.</u> Determine basin location and preliminary geometry. Conduct basin grading design and determine storage available for permanent pool (and water quality extended detention if needed)

This step involves initially designing the grading of the basin (establishing contours) and determining the elevation-storage relationship for the basin. See subsection 4.3.1.3 for more details.

- Include safety and aquatic benches, if required.
- Set WQv permanent pool elevation (and WQv-ED elevation for wet ED and micropool ED basin) based on volumes calculated earlier.

Step 7. Compute extended detention orifice release rate(s) and size(s), and establish CPv elevation

Wet Basin: The CPv elevation is determined from the stage-storage relationship and the orifice is then sized to release the channel protection storage volume over a 24-hour period. The channel protection orifice should have a minimum diameter of 3 inches and should be adequately protected from clogging by an acceptable external trash rack. A reverse slope pipe attached to the riser, with its inlet submerged 1 foot below the elevation of the permanent pool, is a recommended design. The orifice diameter may be reduced to 1 inch if internal orifice protection is used (i.e., an overperforated vertical stand pipe with ½-inch orifices or slots that are protected by wirecloth and a stone filtering jacket). Adjustable gate valves can also be used to achieve this equivalent diameter.

Wet ED Basin and Micropool ED Basin: Based on the elevations established in Step 6 for the extended detention portion of the water quality volume, the water quality orifice is sized to release this extended detention volume in 24 hours. The water quality orifice should have a minimum diameter of 3 inches and should be adequately protected from clogging by an acceptable external trash rack. A reverse slope pipe attached to the riser, with its inlet submerged 1 foot below the elevation of the permanent pool, is a recommended design. The orifice diameter may be reduced to 1 inch if internal orifice protection is used (i.e., an over-perforated vertical stand pipe with ½-inch orifices or slots that are protected by wire cloth and a stone filtering jacket). Adjustable gate valves can also be used to achieve this equivalent diameter. The CPv elevation is then determined from the stage-storage relationship. The invert of the channel protection orifice is located at the water quality extended detention elevation, and the orifice is sized to release the channel protection storage volume over a 24-hour period.

Step 8. Calculate peak discharge release rates and water surface elevations for flood control (i.e., detention)

Set up a stage-storage-discharge relationship for the control structure for the extended detention (CPv) requirement and peak discharge control storm orifices.

Step 9. Design embankment(s) and spillway(s)

Using the peak event water surface elevation, set the top of the embankment elevation, and size the emergency spillway, ensuring safe passage of the peak event. Set the invert elevation of the emergency spillway 0.1 foot above the peak event water surface elevation.

Step 10. Investigate potential basin hazard classification

The design and construction of stormwater management basins are required to follow the latest version of the TDEC Rules and Regulations Application to the Safe Dams Act of 1973.

Step 11. Design inlets, sediment forebay(s), outlet structures, maintenance access, and safety features.

See subsection 4.3.1.3-D through H for more details.

Step 12. Design vegetation

A vegetation scheme for a stormwater basin and its buffer should be prepared to indicate how aquatic and terrestrial areas will be stabilized and established with vegetation. See subsection 4.3.1.3-I for more details.

4.3.1.5 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.1.5 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of stormwater basins as designed. It is the responsibility of the property owner to maintain all stormwater facilities in accordance with the minimum design standards and other guidance provided in this manual. Consult with the local municipal engineering department to determine if there are additional maintenance requirements.

This page provides guidance on maintenance activities that are typically required for stormwater basins, along with a suggested frequency for each activity. Individual stormwater basins may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the basin in proper operating condition at all times.

ns	pection Activities	Suggested Schedule
•	After several storm events or an extreme storm event, inspect for: bank stability; signs of erosion; and damage to, or clogging of, the inlet/outlet structures and pilot channels.	As needed
•	Inspect for: trash and debris; clogging of the inlet/outlet structures and any pilot channels; excessive erosion; sediment accumulation in the basin, forebay and inlet/outlet structures; tree growth on dam or embankment; the presence of burrowing animals; standing water where there should be none; vigor and density of the grass turf on the basin side slopes and floor; differential settlement; cracking; leakage; and slope stability.	Semi-annually
•	Inspect that the inlet/outlet structures, pipes, sediment forebays, and upstream, downstream, and pilot channels are free of debris and are operational.	
	Check for signs of unhealthy or overpopulation of plants and/or fish (if utilized).	
	Note signs of algal growth or pollution, such as oil sheens, discolored water, or unpleasant odors.	A
	Check sediment marker(s) for sediment accumulation in the facility and forebay.	Annually
	Check for proper operation of control gates, valves or other mechanical devices.	
•	Note changes to the wet basin or contributing drainage area as such changes may affect basin performance.	
Лаi	ntenance Activities	Suggested Schedule
•	Clean and remove debris from inlet and outlet structures.	
•	Mow side slopes (embankment) and maintenance access. Periodic mowing is only required along maintenance rights-of-way and the embankment. The remaining basin buffer can be managed as a meadow (mowing every other year) or forest.	Monthly
•	If wetland vegetation is included, remove invasive vegetation.	Semi-annually
1	Repair damage to basin, outlet structures, embankments, control gates, valves, or other mechanical devices; repair undercut or eroded areas.	As Needed
•	Remove pollutants or algal overgrowth as appropriate.	
,	Perform wetland plant management and harvesting.	Annually (if needed)
,	Remove sediment from the forebay. Sediments excavated from stormwater basins that do not receive runoff from land uses that require a Special Pollution Abatement Permit (SPAP) are not considered toxic or hazardous material and can be safely disposed of by either land application or landfilling. Sediment testing may be required prior to sediment disposal when the basin receives discharge from a land use that requires a SPAP.	5 to 7 years or after 50% of the tota forebay capacity has been lost
	Monitor sediment accumulations, and remove sediment when the basin volume has become reduced significantly or the basin is not providing a healthy habitat for vegetation and fish (if used). Discharges of basin water may be considered an illegal discharge, as per the local jurisdiction's requirements. Care should be exercised during basin drawdowns to prevent downstream discharge of sediments, anoxic water, or high flows with erosive velocities. The local jurisdiction should be notified before draining a stormwater basin.	10 to 20 years or afte 25% of the permanen pool volume has been lost

The property owner is encouraged to use the inspection checklist that is presented on the next page as a guide in the inspection and maintenance of stormwater basins. Local authorities can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the stormwater basin. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipal engineering department.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) STORMWATER BASIN INSPECTION CHECKLIST

Location:	

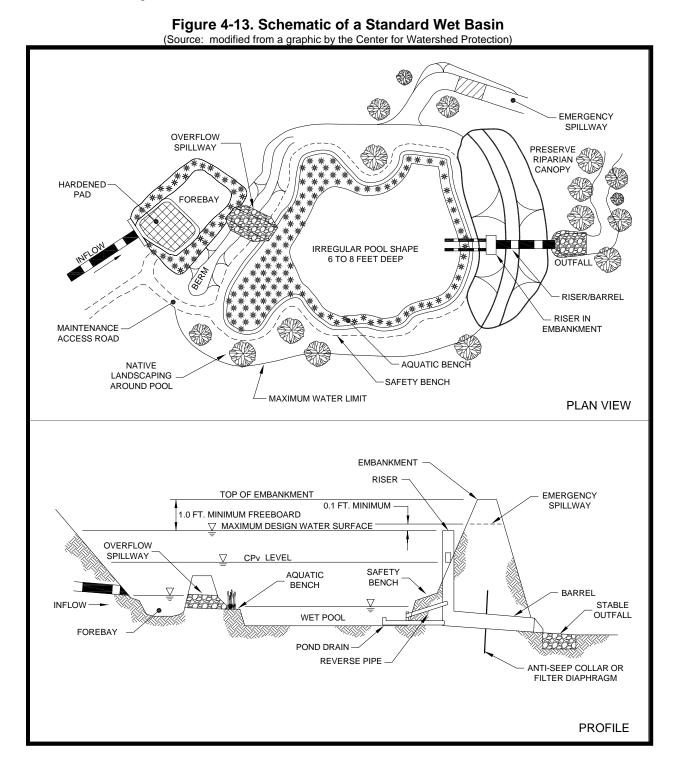
_____ Owner Change since last inspection? Y N

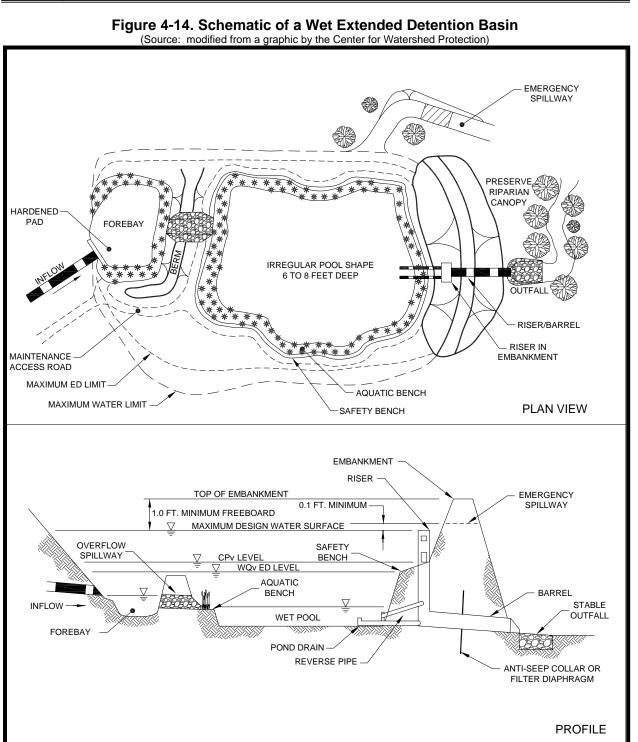
Owner Name, Ad	ddress, Phor	e:	
Date:	Time:	Site conditions	

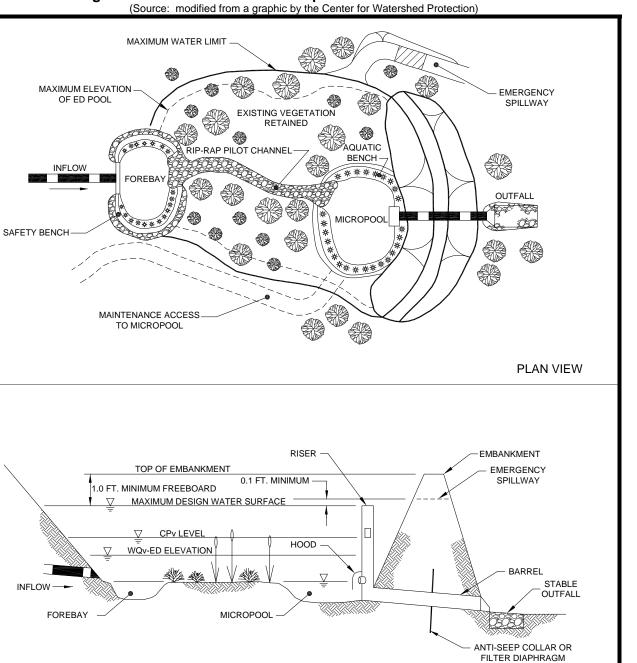
Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Embankment and Emergency Spillway	•	
Healthy vegetation?		
Erosion on embankment?		
Animal burrows in embankment?		
Cracking, sliding, bulging of dam?		
Blocked or malfunctioning drains?		
Leaks or seeps on embankment?		
Obstructions of spillway(s)?		
Erosion in/around emergency spillway?		
Other (describe)?		
Inlet/Outlet Structures and Channels		
Clear of debris and functional?		
Trash rack clear of debris and functional?		
Sediment accumulation?		
Condition of concrete/masonry?		
Metal pipes in good condition?		
Control valve operation?		
Basin drain valve operation?		
Outfall channels function, not eroding?		
Other (describe)?		
Sediment Forebays		
Evidence of sediment accumulation?		
Permanent Pool Areas (if applicable)		
Undesirable vegetation growth?		
Visible pollution?		
Shoreline erosion?		
Erosion at outfalls into basin?		
Headwalls and endwalls in good condition?		
Encroachment by other activities?		
Evidence of sediment accumulation?		
Dry Basin Areas (if applicable)		
Vegetation adequate?		
Undesirable vegetation growth?		
Excessive sedimentation?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are **UNSATISFACTORY**, list corrective actions and the corresponding completion dates below:

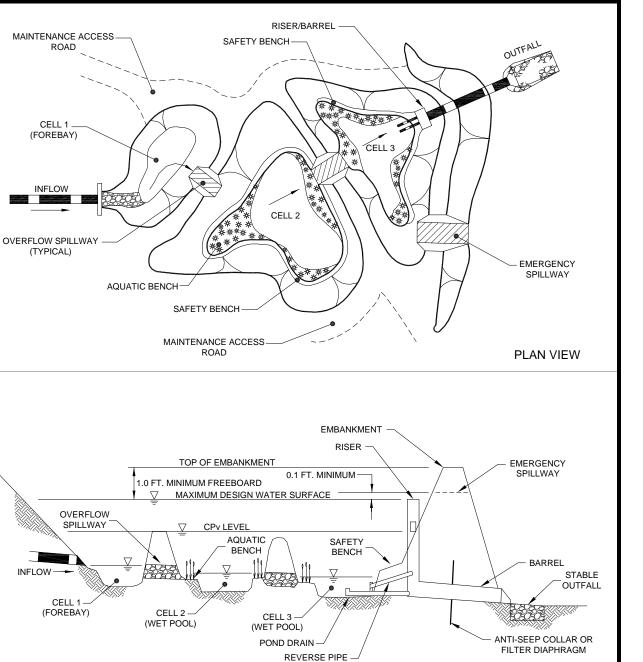
Corrective Action Needed	Due Date


Inspector Signature:____


_____ Inspector Name (printed)_____


4.3.1.6 Example Schematics

The example schematics for stormwater wet basins presented in Figures 4-13 through 4-16 can be used to assist in the design of such BMPs.



PROFILE

Figure 4-16. Schematic of a Multiple Basin System

(Source: modified from a graphic by the Center for Watershed Protection)

PROFILE

4.3.1.7 Design Form

Use of the following design procedure forms when designing a stormwater wet basin is recommended. Proper use and completion of the form may allow a faster review of the basin design by the local municipal engineering department.

1a. Compute WQv volume requirements						
Compute Runoff Coefficient, Rv					Rv =	
Compute WQv	,				WQv =	acre-ft
1b. Compute CPv				CPv =	acre-ft	
Compute avera	age release rate			release rate =	cfs	
Compute stora	age volume req	uired for loca	lly regulated	storage	acre-ft	
storm events					storage	acre-ft
STORMWATER BA	ASIN DESIGN					
2. Is the use of a	stormwater bas	in appropriate	?		See subsectio	on 4.3.1.3
3. Confirm addition	onal design crite	ria and applica	ability.		See subsectio	on 4.3.1.3 - J
4. Pretreatment V V _{pre} =(I)(.1")(1'/		/)			V _{pre} =	acre-ft
5. Allocation of Pe	ermanent Pool	/olume and E	D Volume			
Wet Basin		V _{pool} =1.0(W	Qv)-Vol _{pre}		V _{pool} =	acre-ft
Wet ED Basin		V _{pool} =0.5(W	Qv)-Volara		V _{reci} =	acre-ft
		V _{ED} =0.5(WC			V _{ED} =	acre-ft
Micropool ED E	Basin	V _{pool} =(I)(.1")(1'/12")		V _{pool} =	acre-ft
6. Conduct gradir	a docian and d	otormino ctora	ao availabla		Prepare an elevation-storage tab	lo and curvo using
•	pool (and WQv-		•		the average area method for com	•
Elevation	Area	Ave.	Depth	Volume	Cumulative	Volume above
Elevation	Aica	Area	Dopin	Volume	Volume	Permanent Pool
MSL	ft ²	ft ²	ft	ft ³	ft ³	acre-ft
MOL						
		<u> </u>				

Design Procedure Form: Stormwater Basins

Design Procedure Form: Stormwater Basins (continued)

. WQv Orifice Computations									
	ED release rate (if an	oplicable)					release rate=		cfs
•	Average head, h= (ED elev Permanent Pool elev.) /2						head=		ft
•	rifice from orifice equ		,		Area=		ft ²		
Q=CA(2g									inches
	with orifice condition	ı.)					•		
Compute	Release Rate for CF	Pv-ED control ;	and						
	CPv elevation	V-LD Control C					CPv WSEL=		ft-NGVD
Release I	rate=						release rate=		cfs
Average	head, h= (ED elev I	Permanent Por	ol elev.) /2				head=		ft
	rifice from orifice equ	uation							ft ²
Q=CA(2g	lh) ^{0.5}	C varies wit	th orifice condi	tion.					inches
	e required local mur ates and WSELs	nicipality peak	discharge			Set u	p a stage-stora	ge-discharge rela	ationship
Elevatio		Low Flow	Riser			Barre	2	Emergency	Total
LICVUU	JII Otorago	WQv-ED	CPv.ED	High	Storage	Inlet	Pipe	Spillway	Outflow
				Orif.	Weir	111101	i ihe	Opinway	Cullow
MSL	acre-ft	H(ft) Q(cfs)	H(ft) Q(cfs)	HQ		H(ft) Q(cfs)	H(ft) Q(cfs)	H(ft) Q(cfs)	Q(cfs)
10.01					11 04				
									• 11
CPv-ED Maximum Use weir Check inl	,						H= L=	esign guidance	•
CPv-ED Maximum Use weir Check inl Check ou O. Size eme discharg	release) n head = equation for slot leng let condition	gth (Q=CLH ^{3/2}) ing the local m bankment ele) nunicipality pe vation and	ak			H= L= Use culvert d municipality Q _{ES} =Qp _{eak} WSEL _{peak} = El _{embank}	esign guidance	ft ft from local cfs ft
CPv-ED Maximum Use weir Check inl Check ou O. Size eme discharg emergen	release) n head = equation for slot leng let condition utlet conditions ergency spillway usi e and set top of em	gth (Q=CLH ^{3/2}) ing the local m bankment ele n based on W) nunicipality pe vation and /SEL _{peak}	eak			H= L= Use culvert d municipality Q _{ES} =Qp _{eak} WSEL _{peak} = El _{embank} El _{ES} =	esign guidance	ft from local cfs ft ft ft
CPv-ED Maximum Use weir Check inl Check ou O. Size eme discharg emergen O. Investigar	release) h head = equation for slot leng let condition utlet conditions ergency spillway usi e and set top of emi- icy spillway elevatio	gth (Q=CLH ^{3/2}) ing the local m bankment ele n based on W zard classificat ays, outlet stru) nunicipality pe vation and /SEL _{peak} tion	ak			H= L= Use culvert d municipality Q _{ES} =Qp _{eak} WSEL _{peak} = El _{embank} El _{ES} = See TN Safe I	esign guidance	ft from local cfs ft ft ft ft 3
CPv-ED Maximum Use weir Check inl Check ou O. Size eme discharg emergen O. Investigar I. Design in maintena 2. Design ba TVA Ripa	release) h head = equation for slot leng let condition utlet conditions ergency spillway usi e and set top of em icy spillway elevatio te potential basin haz lets, sediment foreba	gth (Q=CLH ^{3/2}) ing the local m bankment ele n based on W zard classificat ays, outlet stru ety features rding to guidar opage) nunicipality pe vation and /SEL _{peak} tion ictures, nce provided in	ı			H= L= Use culvert d municipality Q _{ES} =Qp _{eak} WSEL _{peak} = El _{embank} El _{ES} = See TN Safe I	esign guidance	ft from local cfs ft ft ft ft 3

4.3.1.8 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- ARC. Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Center for Watershed Protection. *Manual Builder.* Stormwater Manager's Resource Center, Accessed July 2005. *www.stormwatercenter.net*

4.3.1.9 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management*. Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.
- United States Environmental Protection Agency. *Methodology for Analysis of Detention Basins for Control of Urban Runoff Quality.* 1986.
- Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3 Best Management Practices – Stormwater Quality. Denver, Colorado, September 1992.
- Walker, W. *Phosphorus Removal by Urban Runoff Detention Basins*. Lake and Reservoir Management, North American Society for Lake Management, 314, 1987.
- Wanielista. M. Final Report on Efficiency Optimization of Wet Detention Basins for Urban Stormwater Management. University of Central Florida, 1989.

4.3.2 Conventional Dry Detention

General Application Water Quality BMP

Description: A surface storage basin or facility designed to provide water quantity control through detention of stormwater runoff.

KEY CONSIDERATIONS

- Conventional dry detention basins provide control for overbank and extreme flood protection only. These basins are **not** intended to provide water quality treatment.
- Applicable for drainage areas up to 75 acres.
- Typically less costly than stormwater (wet) basins for equivalent flood storage, as less excavation is required.
- Must be used in conjunction with other BMPs that can adequately meet the Northeast Tennessee Regional Stormwater Planning Group's minimum standard of 80% removal of TSS.
- Conventional dry detention basins can be used to provide recreational and other open space opportunities between storm runoff events when the basin bottom is dry.

MAINTENANCE REQUIREMENTS:

- Remove debris from inlet and outlet structures.
- Maintain side slopes and outlet structure.
- Monitor sediment accumulation and remove periodically.

STORMWATER MANAGEMENT APPLICABILITY

Stormwater Quality:	No
Channel Protection:	Yes
Detention/Retention:	Yes

Accepts hotspot runoff: Yes, but two feet of separation distance required to water table when used in hotspot areas

COST CONSIDERATIONS

Land Requirement:	Med - High
Capital Cost:	Low
Maintenance Burden:	Low

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	No
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:

10%

4.3.2.1 General Description

Conventional dry detention basins are surface facilities intended to provide for the temporary storage of stormwater runoff to reduce downstream water quantity impacts. These facilities temporarily detain stormwater runoff, releasing the flow over a period of time. They are designed to completely drain following a storm event and are normally dry between rain events.

Dry detention basins can be utilized to provide flood protection for the locally regulated peak discharge storm event. Such basins provide limited pollutant removal benefits and are **not** intended for water quality treatment. Because conventional dry detention-only facilities can not provide a significant degree of water quality treatment, they must be used in conjunction with other structural controls that provide treatment of the water quality volume (WQv). Chapter 3 provides more information on treatment trains.

4.3.2.2 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of a dry detention basin. Dry detention basins that are not designed to these standards will not be approved. Consult with the local municipal engineering department to determine if there are any variations to these criteria or additional standards that must be followed.

A. LOCATION AND SITING

- It is strongly recommended that dry detention basins be located where the topography allows for maximum runoff storage at minimum excavation or embankment construction costs. When locating a dry detention basin, the site designers should also consider the location and use of other land use features, such as planned open spaces and recreational areas, and should attempt to achieve a multi-use objective with the basin where this can be safely achieved.
- Detention basins shall not be located on unstable slopes or slopes greater than 15%.
- Flood protection controls for locally regulated peak discharges should be designed as final controls for on-site stormwater. Therefore, dry detention basins will typically be located downstream of structural stormwater BMPs that are designed to provide treatment of the water quality volume (WQv) and channel protection volume (CPv).
- A single dry detention basin shall not have a contributing drainage area greater than 75 acres unless specifically approved by the local municipality
- Dry detention basins shall not be located in a stream or any other navigable waters of the United States, including natural (i.e., not constructed) wetlands. Where an appeal or variance of this policy is desired, the property owner must obtain coverage under a Section 404 permit under the Clean Water Act and/or an Aquatic Resource Alteration Permit (ARAP) and provide proof of such coverage with the Water Quality Management Plan.
- Each conventional dry detention basin shall be placed in a water quality easement that is recorded with the deed. The water quality easement shall be defined at the outer edge of the safety bench, or a minimum of 15 feet from the normal water pool elevation (measured perpendicular from the pool elevation boundary) if a safety bench is not included in the basin design. The easement limit should be located no closer than as follows unless otherwise specified by the local municipality:
 - > From a public water system well TDEC specified distance per designated category
 - From a private well 50 feet; if the well is downgradient from a hotspot land use, as defined in this manual, then the minimum setback is 250 feet
 - > From a septic system tank/leach field 50 feet
- The minimum setback for habitable structures from the drainage easement shall be 15 feet. The first floor elevation (FFE) for any structure adjacent to the basin shall have an elevation no lower than 1 foot above the top of the berm.

• All utilities shall be located outside of the basin site.

B. GENERAL DESIGN

- A dry detention basin shall consist of the following elements, designed in accordance with the specifications provided in this section.
 - (1) An outlet structure;
 - (2) An emergency spillway;
 - (3) Maintenance access; and,
 - (4) Appropriate landscaping.
- Dry detention basins shall be sized to attenuate peak discharges. Routing calculations must be used to demonstrate that the storage volume is adequate to meet the local municipality regulations.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

- Vegetated embankments shall be less than 20 feet in height. Side slopes shall not exceed 3:1 (horizontal to vertical) on one side of the basin to facilitate access for maintenance and repair. The remainder of the basin shall have side slopes no steeper than 2:1 although 3:1 is preferred. Benching of the slope is required for embankments greater than 10 feet in height and having greater than a 3:1 side slope. Riprap-protected embankments shall be no steeper than 2:1. Geotechnical slope stability analysis is recommended for embankments greater than 10 feet in height and is mandatory for embankment slopes steeper than those given above. All embankments must be designed to State of Tennessee guidelines for dam safety.
- The maximum depth of the basin shall not exceed 10 feet
- Areas above the normal high water elevations of the detention basin shall be sloped toward the basin to allow drainage and to prevent standing water. Careful finish grading is required to avoid creation of upland surface depressions that may retain runoff. The basin bottom shall be graded toward the outlet to prevent standing water. A low flow or pilot channel across the facility bottom from the inlet to the outlet (often constructed with riprap) is recommended to convey low flows and prevent standing water conditions.

D. INLET and OUTLET STRUCTURES

Inflow channels shall be stabilized with flared riprap aprons, or the equivalent. A sediment forebay shall be provided for dry detention basins that are located in a treatment train with <u>off-line</u> water quality treatment structural controls. The sediment forebay shall be sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep.

- The outlet structure shall be sized for peak discharge controls (based upon hydrologic routing calculations) and can consist of a weir, orifice, outlet pipe, combination outlet, or other acceptable control structure. Small outlets that will be subject to clogging or are difficult to maintain shall not be permitted. Seepage control or anti-seep collars shall be provided for all outlet pipes.
- Water shall not be discharged from a detention basin in an erosive manner. Riprap, plunge pads or pools, or other energy dissipators shall be placed at the outlet of the barrel to prevent scouring and erosion. If a basin outlet discharges immediately to a channel that carries dry weather flow, care should be taken to minimize disturbance along the downstream channel and streambanks, and to reestablish a forested riparian zone in the shortest possible distance (if the downstream area is located in a water quality buffer).

E. EMERGENCY SPILLWAY

• An emergency spillway shall be included in the stormwater basin design to safely pass the locally regulated peak storm event. The spillway prevents basin water levels from overtopping the embankment and causing structural damage. The emergency spillway shall be located so that

downstream structures will not be impacted by spillway discharges.

- The emergency spillway shall be located a minimum 0.1 foot above the 100-year water surface elevation.
- A minimum of 1 foot of freeboard shall be provided, measured from the top of the water surface elevation for the extreme flood to the lowest point of the dam embankment, not counting the emergency spillway.

F. MAINTENANCE ACCESS

- A maintenance right-of-way or easement having a minimum width of 20 feet shall be provided to the basin from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.
- The maintenance access shall extend to the forebay (if included) and outlet works, and, to the extent feasible, be designed to allow vehicles to turn around.

G. SAFETY FEATURES

- A safety bench shall be provided for embankments greater than 10 feet in height and having greater than a 3:1 side slope. For large basins, the safety bench shall extend no less than 15 feet outward from the normal water edge to the toe of the basin side slope. The slope of the safety bench shall not exceed 6%.
- All embankments and spillways shall be designed to TDEC rules and regulations as applied to the Safe Dams Act of 1973, where applicable.
- The property owner may consider fencing the basin for the purpose of safety management.
- All outlet structures shall be designed so as not to permit access by children. The Northeast Tennessee Regional Stormwater Planning Group encourages the posting of warning signs near the basin to prohibit swimming and fishing in the facility.

H. LANDSCAPING

- All areas of the basin shall be stabilized with vegetation to prevent the occurrence of erosion.
- Woody vegetation shall not be planted on the embankment or allowed to grow within 15 feet of the toe of the embankment and 25 feet from the principal spillway structure.
- Water quality buffers, as defined and described in Chapter 6 of this manual, are not required for dry detention basins. However, it should be noted that vegetated buffers can be utilized for water quality treatment and can result in a volume credit that reduces the WQv. The criteria for the vegetated buffer credit are presented in Chapter 5 of this manual.

4.3.2.3 Design Procedures

In general, site designers should perform the following design procedures when designing a dry detention basin.

Step 1. Compute runoff control volumes.

Calculate pre- and post-development peak discharges and runoff volumes. Consult local regulations for peak discharge control (i.e., detention) requirements.

Step 2. Confirm design criteria and applicability.

Consider any special site-specific design conditions/criteria from subsection 4.3.2.2. Check with the local municipal authority, TDEC, or other agencies to determine if there are any additional

restrictions and/or surface water or watershed requirements that may apply to the site.

Step 3. Determine basin location and preliminary geometry.

This step involves initially designing the grading of the basin (establishing contours) and determining the elevation-storage relationship for the basin. Include consideration of a safety bench, if used or required by the local municipal authority.

Step 4. Calculate peak discharge release rates and water surface elevations for flood control (i.e., detention)

Set up a stage-storage-discharge relationship for the control structure for the peak discharge control storm orifices.

Step 5. Design embankment(s) and spillway(s)

Size emergency spillway, calculate the peak event water surface elevation, set the top of the embankment elevation a minimum of 1 foot above the water surface elevation of the peak event, and analyze safe passage of the peak event. Set the emergency spillway elevation a minimum 0.1 foot above the peak event water surface elevation. At final design, provide safe passage for the peak event.

Step 6. Investigate potential basin hazard classification

The design and construction of dry detention basins are required to follow the latest version of the TDEC Rules and Regulations Application to the Safe Dams Act of 1973.

Step 7. Design inlets, outlet structures, maintenance access, and safety features.

See subsection 4.3.2.2 for more details.

Step 8. Design vegetation

A vegetation scheme for the detention basin should be prepared to indicate how the basin bottom, side slopes and embankments will be stabilized and established with vegetation.

4.3.2.4 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.2.4 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of the detention basin as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The Director has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for detention basins, along with a suggested frequency for each activity. Individual basins may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the basin in proper operating condition at all times.

Ins	pection Activities	Suggested Schedule
•	After several storm events or an extreme storm event, inspect for: bank stability; signs of erosion; and damage to, or clogging of, the outlet structures and pilot channels.	As Needed
•	Inspect for: trash and debris; clogging of the outlet structures and any pilot channels; excessive erosion; sediment accumulation in the basin and inlet/outlet structures; tree growth on dam or embankment; the presence of burrowing animals; standing water where there should be none; vigor and density of the grass turf on the basin side slopes and floor; differential settlement; cracking; leakage; and slope stability.	Semi-annually
•	Inspect that the outlet structures, pipes, and downstream and pilot channels are free of debris and are operational.	
•	Note signs of pollution, such as oil sheens, discolored water, or unpleasant odors.	Annually
•	Check for sediment accumulation in the facility.	
•	Check for proper operation of control gates, valves or other mechanical devices.	
Ma	Intenance Activities	Suggested Schedule
•	Clean and remove debris from inlet and outlet structures.	
•	Mow side slopes (embankment) and maintenance access. Periodic mowing is only required along maintenance rights-of-way and the embankment.	Monthly or as needed
•	Repair and revegetate eroded areas.	
•	Remove vegetation that may hinder the operation of the basin.	As Needed
•	Repair damage to the basin, outlet structures, embankments, control gates, valves, or other mechanical devices; repair undercut or eroded areas.	
•	Monitor sediment accumulations, and remove sediment when the basin volume has become reduced significantly.	As Needed (typically every 20 to 50 years)

The property owner is encouraged to use the inspection checklist that is presented on the next page as a guide in the inspection and maintenance of conventional dry detention basins. Local authorities can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the dry ED basin. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipal engineering department.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) CONVENTIONAL DRY DETENTION BASIN INSPECTION CHECKLIST

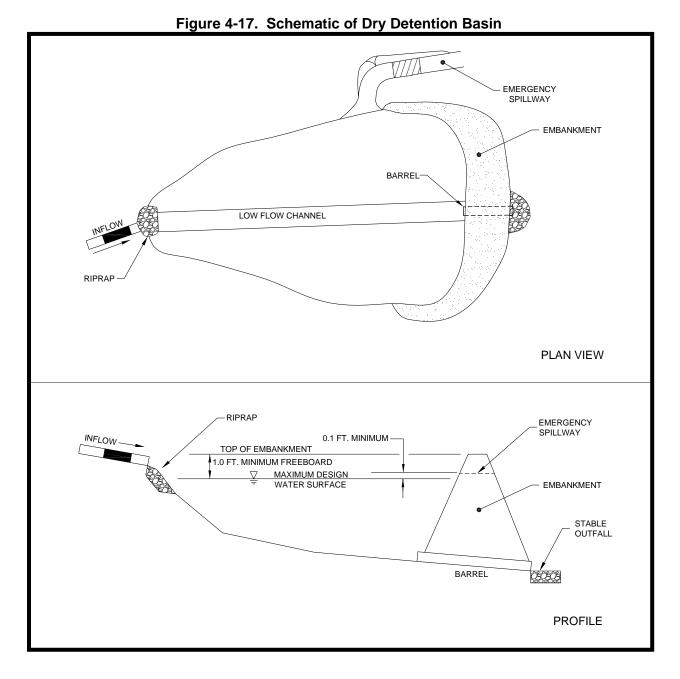
Location:

_ Owner Change since last inspection? Y N

Owner Na	ame, Address, Phone:		
Date:	Time:	Site conditions:	
	Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
		Embankment and Emerg	jency Spillway
Vegetati	on coverage adequate?		
Erosion	on embankment?		
Animal b	ourrows in embankment?		
Cracking	g, sliding, bulging of dam?		
Blocked	or malfunctioning drains?		
Leaks o	r seeps on embankment?		
Obstruct	tions of spillway(s)?		
Erosion	in/around emergency spillway?		
Other (d	lescribe)?		
Inlet/Ou	tlet Structures and Channels		
Clear of	debris and functional?		
Trash ra	ck clear of debris and functional?		
Sedimer	nt accumulation?		
	n of concrete/masonry?		
Metal pi	pes in good condition?		
Control	valve operational?		
Basin dr	ain valve operational?		
Outfall c	hannels function, not eroding?		
Other (d	lescribe)?		
Basin B	ottom		
Vegetati	on adequate?		
Undesira	able vegetation growth?		
Excessiv	ve sedimentation?		
Hazards	3		
Have the	ere been complaints from residents?		
Public h	azards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date


Inspector Signature:___

Inspector Name (printed)____

4.3.2.5 Example Schematic

The example schematics for dry detention basins presented in Figure 4-17 can be used to assist in the design of such a BMP.

4.3.2.6 Design Form

Use of the following design procedure forms when designing a conventional dry detention basin is recommended. Proper use and completion of the form may allow a faster review of the basin design by the local municipal engineering department.

PRELIMINARY HYDROLOGIC CALCULATIONS											
 Compute storage volume required for locally regulated storm events 							storage = storage =		acre-ft acre-ft		
DR	Y DETENTIO	ON BASIN DES	IGN								
2.	Confirm desig	gn criteria and a	pplicability.					See Section	4.3.2.2		
3.	3. Conduct grading design and determine storage available							Prepare an elevation-storage table and curve using the average area method for computing volumes.			
	Elevation	Area	Ave.	Depth	V	olume	Cumula	-			
	MSL	ft ²	Area ft ²	ft		ft ³	Volun ft ³	ne			
			1								
4.	Calculate rec release rates	uired local muni	icipality peał	k discharge			Set up a stage-s	storage-discha	rge relationship		
]	
	Elevation	Storage	Low Flow WQv-ED	Riser CPv.ED	High S	storage	Barre Inlet	el Pipe	Emergency Spillway	Total Storage	
					Orif.	Weir				Ŭ	
	MSL	acre-ft	H(ft) Q(cfs)	H(ft) Q(cfs)	ΗQ	ΗQ	H(ft) Q(cfs)	H(ft) Q(cfs)	H(ft) Q(cfs)	acre-ft	
										·	
	Calculate Qp	peak						Qp _{peak} =		cfs	
	Maximum he	ad = ation for slot len		13/2				H=		ft ft	
	Use weir equ	ation for slot len	igin (Q=CL⊓	.)				L=		π	
	Check inlet c Check outlet							Use culvert d municipality	lesign guidanc	e from local	
5.	Size emerge	ncy spillway usir	ng the local r	nunicipality p	eak			Q _{ES} =Qp _{peak}		cfs	
	•	d set top of emb pillway elevatior						WSEL _{peak} =		ft #	
	emergency s	piliway elevation	i based on v	VSELpeak				⊏ı _{embank} = El _{ES} =		ft ft	
6.	Investigate p	otential basin ha	azard classifi	cation					Dams Act of 19	973	
 Design inlets, sediment forebays, outlet structures, maintenance access, and safety features 							See Section	4.3.2.2			
8. Design basin vegetation											

Design Procedure Form: Dry Detention Basins

4.3.2.7 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.

4.3.2.8 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management*. Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Merritt, F.S., Loftin, M.K., Ricketts, J.T. *Standard Handbook for Civil Engineers*. Fourth Edition McGraw-Hill, 1996.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.

4.3.3 Dry Extended Detention Basins

General Application Water Quality BMP

Description: A surface storage basin or facility designed to provide water quantity and quality control through detention of stormwater runoff.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum contributing drainage area of 75 acres.
- A sediment forebay or equivalent upstream pretreatment must be provided.
- Minimum flow length to width ratio for the basin is 1.5:1. The basin shall be sized to detain the volume of runoff to be treated for a minimum of 24 hours.
- Side slopes to the basin shall not exceed 3:1 (h:v) on one side of the basin to facilitate access. Slopes as steep as 2:1 will be allowed for other areas, with proper stabilization.

ADVANTAGES / BENEFITS:

- Moderate removal rate of urban pollutants.
- High community acceptance.
- Useful for water quality treatment and flood control.

DISADVANTAGES / LIMITATIONS:

- Potential for thermal impacts/downstream warming.
- Dam height restrictions for high relief areas.
- Basin drainage can be problematic for low relief terrain.

MAINTENANCE REQUIREMENTS:

- Remove debris from inlet and outlet structures.
- Maintain side slopes and outlet structure.
- Remove invasive vegetation.
- Monitor sediment accumulation and remove periodically.

OTHER CONSIDERATIONS:

- Outlet clogging
- Safety bench
- Landscaping

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	Yes
Detention/Retention:	Yes

Accepts hotspot runoff: Yes, but two feet of separation distance required to water table when used in hotspot areas

COST CONSIDERATIONS

Land Requirement:	Med - High
Capital Cost:	Low
Maintenance Burden:	Low

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	No
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids: 60%

4.3.3.1 General Description

Dry extended detention (ED) basins are surface facilities that provide for the temporary storage of stormwater runoff for some minimum time (e.g., 24 to 72 hours) to allow suspended sediments and other associated pollutants to settle to the basin bottom, and therefore, not discharge to downstream channels. Dry ED basins provide moderate treatment of the water quality volume (WQv), are useful for control of the channel protection volume (CPv), and can provide overbank flood protection and extreme flood protection as well.

4.3.3.2 Pollutant Removal Capabilities

Dry ED basins are presumed capable of removing at least 60% of the total suspended solids load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the specifications provided in this manual. The TSS removal performance can be reduced by poor design, construction or maintenance.

Additionally, research has shown that use of dry ED basins will have moderate benefits beyond the removal of TSS, such as the removal of other pollutants (i.e. phosphorous, nitrogen, fecal coliform and heavy metals), as well, which is useful information should the pollutant removal criteria change in the future.

For additional information and data on dry ED basins, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.stormwatercenter.net</u> and the International Stormwater Best Management Practices Database at <u>www.bmpdatabase.org</u>.

Because dry ED basins cannot alone provide adequate treatment of the water quality volume, they must be utilized in a treatment train approach with other structural controls to achieve the goal of 80% removal of total suspended solids (TSS). Chapter 3 provides more information on treatment trains.

4.3.3.3 Planning and Design Standards

The following criteria shall be considered **minimum** design standards for the design of a dry ED basin. Dry ED basins that are not designed to these standards will not be approved. Consult with the local municipal engineering department to determine if there are any variations to these criteria or additional standards that must be followed.

A. LOCATION AND SITING

- It is strongly recommended that dry ED basins be located where the topography allows for maximum runoff storage at minimum excavation or embankment construction costs. When locating a dry ED basin, the site designers should also consider the location and use of other land use features, such as planned open spaces and recreational areas, and should attempt to achieve a multi-use objective with the basin where this can be safely achieved.
- Dry ED basins shall not be located on unstable slopes or slopes greater than 15%.
- Flood protection controls for control of the peak discharges should be designed as final controls for on-site stormwater. Because most dry ED basins will be used for flood protection and are not capable of achieving the Northeast Tennessee Regional Stormwater Planning Group's required 80% TSS removal standard, they will typically be located downstream of structural stormwater BMPs that are used in conjunction with the dry ED basin to provide 80% treatment of the WQv.
- A single dry ED basin shall not have a contributing drainage area greater than 75 acres unless specifically approved by the Director.
- Dry ED basins shall not be located in a stream or any other navigable waters of the United States, including natural (i.e., not constructed) wetlands. Where an appeal or variance of this policy is desired, the property owner must obtain coverage under a Section 404 permit under the Clean Water Act and/or an Aquatic Resource Alteration Permit (ARAP) and provide proof of such coverage with the Water Quality Management Plan.

- Each dry ED basin shall be placed in a water quality easement. The water quality easement shall be defined at the outer edge of the safety bench, or a minimum of 15 feet from the normal water pool elevation (measured perpendicular from the pool elevation boundary) if a safety bench is not included in the basin design. The easement limit should be located no closer than as follows unless otherwise specified by the local municipal regulations:
 - > From a public water system well TDEC specified distance per designated well category
 - From a private well 50 feet; if the well is downgradient from a hotspot land use, as defined in this manual, then the minimum setback is 250 feet
 - From a septic system tank/leach field 50 feet
- The minimum setback for habitable structures from the water quality easement shall be 15 feet. The first floor elevation (FFE) for any structure adjacent to the basin shall have an elevation no lower than 1 foot above the top of the berm.
- All utilities shall be located outside of the dry ED basin.

B. GENERAL DESIGN

- A dry ED basin shall consist of the following elements, designed in accordance with the specifications provided in this section:
 - (1) An outlet structure;
 - (2) An emergency spillway;
 - (3) A sediment forebay;
 - (4) Maintenance access;
 - (5) Appropriate landscaping.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

- Vegetated embankments shall be less than 20 feet in height. Side slopes shall not exceed 3:1 (horizontal to vertical) on one side of the basin to facilitate access for maintenance and repair. The remainder of the basin shall have side slopes no steeper than 2:1 although 3:1 is preferred. Benching of the slope is required for embankments greater than 10 feet in height and having greater than a 3:1 side slope. Riprap-protected embankments shall be no steeper than 2:1. Geotechnical slope stability analysis is recommended for embankments greater than 10 feet in height and is mandatory for embankment slopes steeper than those given above. All embankments must be designed to State of Tennessee guidelines for dam safety.
- The maximum depth of the basin shall not exceed 10 feet.
- Areas above the normal high water elevations of the dry ED basin shall be sloped toward the basin to allow drainage and to prevent standing water. Careful finish grading is required to avoid creation of upland surface depressions that may retain runoff. The basin bottom shall be graded toward the outlet to prevent standing water. A low flow or pilot channel across the facility bottom from the inlet to the outlet (often constructed with riprap) is recommended to convey low flows and prevent standing water conditions.

D. PRETREATMENT / INLETS

- A sediment forebay shall be provided for dry ED basins that are located in a treatment train with other water quality treatment structural controls. The sediment forebay is utilized to remove incoming sediment from the stormwater flow prior to dispersal into the larger basin area. The forebay shall consist of a separate cell, formed by an acceptable barrier. A forebay must be provided at each inlet to the dry ED basin, unless the inlet provides less than 10% of the total design storm inflow to the basin.
- The sediment forebay shall be sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep.

- A fixed vertical sediment depth marker shall be installed in the forebay to measure sediment deposition over time. The bottom of the forebay may be hardened (e.g., using concrete, paver blocks, etc.) to make sediment removal easier.
- Inflow channels to the forebay shall be stabilized with flared riprap aprons, or the equivalent. Exit velocities of discharges from the forebay to the basin must be non-erosive.

E. OUTLET STRUCTURES

- Flow control from a dry ED basin that is used for control of the WQv, CPv and the locally regulated peak discharges is typically accomplished with the use of a riser and barrel. The riser is a vertical pipe or inlet structure that is located at the base of the basin. The outlet barrel is a horizontal pipe attached to the riser that conveys flow under the embankment. The riser shall be located within the basin embankment for maintenance access, safety and aesthetics.
- A number of outlets at varying depths in the riser provide internal flow control for routing of the WQv, CPv, and the locally regulated peak discharges. The number of orifices can vary and is usually a function of the basin design. A dry ED basin riser configuration is typically comprised of an outlet that provides water quality (WQv), a channel protection (CPv) outlet (usually an orifice), and outlets for the locally controlled peak events (often a slot or weir). All outlets are protected by trash racks to prevent clogging. The channel protection orifice is sized to release the channel protection storage volume for a minimum 24-hour period.
- The water quality/channel protection outlet can be fitted with adjustable gate valves or another mechanism that can be used to adjust detention time.
- After entering the riser, flow is conveyed through the barrel and is discharged downstream. Anti-seep collars shall be installed on the outlet barrel to reduce the potential for pipe or embankment failure.
- Seepage control or anti-seep collars shall be provided for all outlet pipes.
- Water shall not be discharged from a dry ED basin in an erosive manner. Riprap, plunge pads or pools, or other energy dissipators shall be placed at the outlet of the barrel to prevent scouring and erosion. If a basin outlet discharges immediately to a channel that carries dry weather flow, care should be taken to minimize disturbance along the downstream channel and streambanks, and to reestablish a forested riparian zone in the shortest possible distance (if the downstream area is located in a water quality buffer).

F. EMERGENCY SPILLWAY

- An emergency spillway shall be included in the dry ED basin design to safely pass the locally regulated storm event. The spillway prevents basin water levels from overtopping the embankment and causing structural damage. The emergency spillway shall be located so that downstream structures will not be impacted by spillway discharges.
- The emergency spillway shall be located a minimum 0.1 foot above the 100-year water surface elevation.
- A minimum of 1 foot of freeboard shall be provided, measured from the top of the water surface elevation for the extreme flood to the lowest point of the dam embankment, not counting the emergency spillway.

G. MAINTENANCE ACCESS

- A maintenance right-of-way or easement having a minimum width of 20 feet shall be provided to the basin from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.
- The maintenance access shall extend to the forebay (if included) and outlet structure, and, to the extent feasible, be designed to allow vehicles to turn around.

H. SAFETY FEATURES

- A safety bench shall be provided for embankments greater than 10 feet in height and having greater than a 3:1 side slope. For large basins, the safety bench shall extend no less than 15 feet outward from the normal water edge to the toe of the basin side slope. The slope of the safety bench shall not exceed 6%.
- All embankments and spillways shall be designed to TDEC rules and regulations as applied to the Safe Dams Act of 1973, where applicable.
- The property owner may consider fencing the basin for the purpose of safety management.
- All outlet structures shall be designed so as not to permit access by children. The Northeast Tennessee Regional Stormwater Planning Group encourages the posting of warning signs near the basin to prohibit swimming and fishing in the facility.

I. LANDSCAPING

- All areas of the basin shall be stabilized with appropriate vegetation to prevent the occurrence of erosion.
- Woody vegetation shall not be planted on the embankment or allowed to grow within 15 feet of the toe of the embankment and 25 feet from the principal spillway structure.
- Water quality buffers, as defined and described in Chapter 6 of this manual, are not required for dry ED basins. However, it should be noted that vegetated buffers can be utilized for water quality treatment and can result in a volume credit that reduces the WQv. The criteria for the vegetated buffer credit are presented in Chapter 5 of this manual.

4.3.3.4 Design Procedures

In general, site designers should perform the following design procedures when designing a dry ED basin.

Step 1. Compute runoff control volumes

Calculate WQv, CPv, and pre- and post-development peak discharges and runoff volumes. The calculation of WQv and CPv is presented in Chapter 3 of this manual. Consult local regulations for peak discharge control (i.e., detention) requirements.

Step 2. Confirm design criteria and applicability

Consider any special site-specific design conditions/criteria from subsection 4.3.3.3. Check with the Northeast Tennessee Regional Stormwater Planning Group, TDEC or other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply to the site.

Step 3. Determine pretreatment volume

A sediment forebay is provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the basin. The forebay should be sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage and should be 4 to 6 feet deep.

Step 4. Determine basin location and preliminary geometry

This step involves initially designing the grading of the basin (establishing contours) and determining the elevation-storage relationship for the basin. Include safety bench, if required or used. See subsection 4.3.3.3 for more details.

Step 5. Compute extended detention orifice release rate(s) and size(s), and establish CPv elevation

The water quality orifice is sized to release the calculated WQv and CPv over a minimum 24 hour period and should be adequately protected from clogging by an acceptable external trash rack. The CPv elevation is then determined from the stage-storage relationship. The invert of the channel

protection orifice is located at the water quality extended detention elevation, and the orifice is sized to release the channel protection storage volume over a 24-hour period.

Step 6. Calculate peak discharge release rates and water surface elevations

Set up a stage-storage-discharge relationship for the control structure for the extended detention and the locally regulated peak discharge orifices.

Step 7. Design embankment(s) and spillway(s)

Size emergency spillway, calculate the peak event water surface elevation, set the top of the embankment elevation, and analyze safe passage of the peak event. Set the invert elevation of the emergency spillway 0.1 foot above the peak event water surface elevation.

Step 8. Investigate potential basin hazard classification

The design and construction of stormwater management basins are required to follow the latest version of the TDEC Rules and Regulations Application to the Safe Dams Act of 1973.

Step 9. Design inlets, sediment forebay(s), outlet structures, maintenance access, and safety features.

See subsection 4.3.3.3 for more details.

Step 10. Design vegetation

A vegetation scheme for the dry ED basin should be prepared to indicate how the basin bottom, side slopes and embankment will be stabilized and established with vegetation.

4.3.3.5 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.3.5 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of the dry ED basin as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The Director has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for dry ED basins, along with a suggested frequency for each activity. Individual basins may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the basin in proper operating condition at all times.

Ins	pection Activities	Suggested Schedule	
•	After several storm events or an extreme storm event, inspect for: bank stability; signs of erosion; and damage to, or clogging of, the outlet structures and pilot channels.	As needed	
•	Inspect for: trash and debris; clogging of the outlet structures and any pilot channels; excessive erosion; sediment accumulation in the basin, forebay and inlet/outlet structures; tree growth on dam or embankment; the presence of burrowing animals; standing water where there should be none; vigor and density of the grass turf on the basin side slopes and floor; differential settlement; cracking; leakage; and slope stability.	Semi-annually	
٠	Inspect that the outlet structures, pipes, and downstream and pilot channels are free of debris and are operational.		
٠	Note signs of pollution, such as oil sheens, discolored water, or unpleasant odors.	Annually	
٠	Check for sediment accumulation in the facility.		
٠	Check for proper operation of control gates, valves or other mechanical devices.		
Mai	ntenance Activities	Suggested Schedule	
•	Clean and remove debris from inlet and outlet structures.		
•	Mow side slopes (embankment) and maintenance access. Periodic mowing is only required along maintenance rights-of-way and the embankment.	Monthly or as needed	
٠	Repair and revegetate eroded areas.		
•	Remove vegetation that may hinder the operation of the basin.	As Needed	
•	Repair damage to basin, outlet structures, embankments, control gates, valves, or other mechanical devices; repair undercut or eroded areas.		
•	Monitor sediment accumulations, and remove sediment when the basin volume has become reduced significantly.	As Needed (typically every 20 to 50 years)	

The property owner is encouraged to use the inspection checklist that is presented on the next page as a guide in the inspection and maintenance of dry ED basins. Local authorities can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the dry ED basin. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipal engineering department.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) DRY EXTENDED DETENTION BASIN INSPECTION CHECKLIST

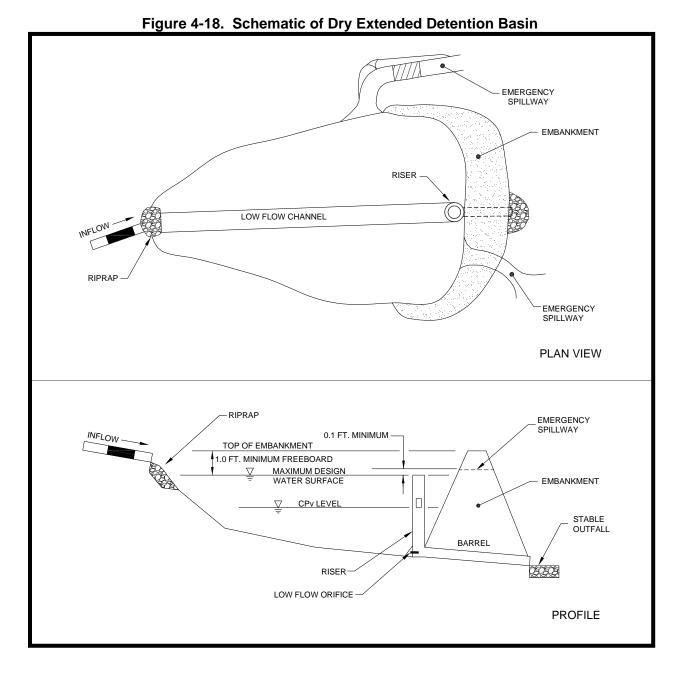
Location:			
	Address	Phone:	

Owner Change since last inspection? Y N

Owner Name, Address, Phone:		
Date: Time: S	ite conditions:	
Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Embankment and Emergency Spillway		
Vegetation coverage adequate?		
Erosion on embankment?		
Animal burrows in embankment?		
Cracking, sliding, bulging of dam?		
Blocked or malfunctioning drains?		
Leaks or seeps on embankment?		
Obstructions of spillway(s)?		
Erosion in/around emergency spillway?		
Other (describe)?		
Inlet/Outlet Structures and Channels		
Clear of debris and functional?		
Trash rack clear of debris and functional?		
Sediment accumulation?		
Condition of concrete/masonry?		
Metal pipes in good condition?		
Control valve operational?		
Basin drain valve operational?		
Outfall channels function, not eroding?		
Other (describe)?		
Basin Bottom		
Vegetation adequate?		
Undesirable vegetation growth?		
Excessive sedimentation?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date


Inspector Signature:__

Inspector Name (printed)____

4.3.3.6 Example Schematic

The example schematic for a dry extended detention basin presented in Figure 4-18 can be used to assist in the design of such BMPs.

4.3.3.7 Design Form

Use of the following design procedure forms when designing a dry extended detention basin is recommended. Proper use and completion of the form may allow a faster review of the basin design by the local municipal engineering department.

Design Procedure Form: Dry Extended Detention Basins

PRELIMINARY HY	DROLOGIC	CALCULAT	IONS			
1a. Compute WQv Compute Runo Compute WQv	ff Coefficient, F		Rv = WQv =	acre-ft		
1b. Compute CPv Compute avera Compute storag storm events	•		ally regulated	CPv = release rate = storage = storage =	acre-ft cfs acre-ft acre-ft	
DRY EXTENDED	DETENTION I	BASINS DE	ESIGN			
2. Is the use of a c	dry extended d	etention bas	sin appropriate	e?	See subsections 4	.3.3.1
3. Confirm design	criteria and ap	plicability.		See subsection 4.3.3.3		
4. Pretreatment V V _{pre} =(I)(.1")(1'/		y)		V _{pre} =	acre-ft	
5. Conduct gradin	g design and d	letermine st	orage availabl	le	Prepare an elevation-storage table a the average area method for compute	
Elevation MSL	Area ft ²	Ave. Area ft ²	Depth ft	Volume ft ³	Cumulative Volume ft ³	
		•			·	

Design Procedure Form: Dry Extended Detention Basins (continued)

6.	Average head	elease rate (if a d, h= (ED elev e from orifice eq	Permanent F uation	Pool elev.) /2				cfs ft ft2 inches		
	establish CPv Release rate= Average head	= d, h= (ED elev e from orifice eq	Permanent F uation		$\begin{array}{c} CPv \ WSEL= & ft\text{-}NGVD \\ \hline release \ rate= & cfs \\ head= & ft \\ Area= & ft^2 \\ diameter & inches \end{array}$			cfs ft ft ²		
7.	 Calculate required local municipality peak discharge release rates and WSELs 					Set u	ip a stage-stora	age-discharge r	elationship	
	Elevation	Storage	Low Flow	Riser			Barre	əl	Emergency	Total
			WQv-ED	CPv.ED	-	Storage	Inlet	Pipe	Spillway	Storage
	MSL	acre-ft	H(ft) Q(cfs)	H(ft) Q(cfs)	Orif. H Q	Weir H Q	H(ft) Q(cfs)	H(ft) Q(cfs)	H(ft) Q(cfs)	acre-ft
	Qp _{peak} =pre-dev. Peak discharge - (WQv-ED release + CPv-ED release)							Qp _{peak} =		cfs
	Maximum hea Use weir equa	ad = ation for slot len	igth (Q=CLH	^{3/2})			H=ft ft			ft ft
	Check inlet co Check outlet							Use culverty municipality	design guidan	ce from local
8.	 Size emergency spillway using the local municipality peak discharge and set top of embankment elevation and emergency spillway elevation based on WSEL_{peak} 						Q _{ES} =Qp _{peak} cfs WSEL _{peak} = ft El _{embank} = ft El _{es} = ft			ft
9.	Investigate po	otential basin ha	azard classific	cation				See TN Safe	Dams Act of 19	973
10.	 Design inlets, sediment forebays, outlet structures, maintenance access, and safety features 							See subectio	n 4.3.3.3	
11.	TVA Riparian	ation according Restoration we om/river/land	bpage		n/inde:	<u>x.htm</u>				

4.3.3.8 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Center for Watershed Protection. *Manual Builder.* Stormwater Manager's Resource Center, Accessed July 2005. <u>www.stormwatercenter.net</u>

4.3.3.9 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.
- United States Environmental Protection Agency. *Methodology for Analysis of Detention Basins for Control of Urban Runoff Quality.* 1986.
- Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3 Best Management Practices – Stormwater Quality. Denver, Colorado, September 1992.
- Walker, W. *Phosphorus Removal by Urban Runoff Detention Basins*. Lake and Reservoir Management, North American Society for Lake Management, 314, 1987.

4.3.4 Stormwater Wetlands

Description: A constructed wetland system used for stormwater management. Runoff volume is both stored and treated in the wetland facility.

General Application

Water Quality BMP

KEY DESIGN CONSIDERATIONS

DESIGN GUIDELINES:

- Minimum contributing drainage area of 25 acres; 5 acres for a pocket wetland.
- Minimum dry weather flow path of 2:1 (length:width) should be provided from inflow to outflow.
- Minimum of 35% of total surface area should have a depth of 6 inches or less; 10 to 20% of surface area should be deep pool (1.5- to 6-foot depth).
- Hydrologic group 'A' and 'B' soils may require a liner.

ADVANTAGES / BENEFITS:

- Good nutrient removal.
- Provides natural wildlife habitat.
- Relatively low maintenance costs.

DISADVANTAGES / LIMITATIONS:

- Requires large land area.
- Needs continuous baseflow for viable wetland.
- Regular sediment removal is critical to sustain wetlands.

MAINTENANCE REQUIREMENTS:

- Replace wetland vegetation to maintain at least 50% surface area coverage.
- Remove invasive vegetation.
- Monitor sediment accumulation and remove periodically.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	Yes
Detention/Retention:	Yes

Accepts hotspot runoff: No

COST CONSIDERATIONS

Land Requirement:	Med-High
Capital Cost:	Med
Maintenance Burden:	
Shallow Wetland	Med
ED Shallow Wetland	Med
Pocket Wetland	High
Basin/Wetland	Med

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:

75%

4.3.4.1 General Description

Stormwater wetlands (also referred to as *constructed wetlands*) are constructed shallow marsh systems that are designed to both treat urban stormwater and control runoff volumes. As stormwater runoff flows through the wetland facility, pollutant removal is achieved through settling and uptake by marsh vegetation. Wetlands can be utilized effectively for pollutant removal and also offer aesthetic value and wildlife habitat.

Constructed stormwater wetlands differ from natural wetland systems in that they are engineered facilities designed specifically for the purpose of treating stormwater runoff and typically have less biodiversity than natural wetlands both in terms of plant and animal life. However, as with natural wetlands, stormwater wetlands require a continuous base flow or a high water table to support aquatic vegetation.

There are several design variations of the stormwater wetland, each design differing in the relative amounts of shallow and deep water, and dry storage above the wetland. The variations are shown in Figure 4-19. These include the shallow wetland, the extended detention shallow wetland, basin/wetland system and pocket wetland. Below are descriptions of each design variant:

Shallow Wetland

Extended Detention Shallow Wetland

Pocket wetland

Newly Constructed Shallow Wetland

- Shallow Wetland In the shallow wetland design, most of the water quality treatment volume is in the relatively shallow high marsh or low marsh depths. The only deep portions of the shallow wetland design are the forebay at the inlet to the wetland, and the micropool at the outlet. One disadvantage of this design is that, since the pool is very shallow, a relatively large amount of land is typically needed to store the water quality volume.
- Extended Detention (ED) Shallow Wetland The extended detention (ED) shallow wetland design is the same as the shallow wetland; however, part of the water quality treatment volume is provided as extended detention above the surface of the marsh and released over a period of 24 hours. This design can treat a greater volume of stormwater in a smaller space than the shallow wetland design.

In the extended detention shallow wetland option, plants that can tolerate both wet and dry periods need to be specified in the ED zone.

- **Basin/Wetland System** The basin/wetland system has two separate cells: a wet basin and a shallow marsh. The wet basin traps sediments and reduces runoff velocities prior to entry into the wetland, where stormwater flows receive additional treatment. Less land is required for a basin/wetland system than for the shallow wetland or the ED shallow wetland systems.
- **Pocket Wetland** A pocket wetland is intended for smaller drainage areas of 5 to 10 acres and typically requires excavation down to the water table for a reliable water source to support the wetland system.

Certain types of wetlands, such as *submerged gravel wetland systems* are not recommended for general application use to meet stormwater management goals due to limited performance data. They may be applicable in special or retrofit situations where there are severe limitations on what can be implemented. Please see a further discussion of submerged gravel wetlands in Section 4.4.3.

4.3.4.2 Stormwater Management Suitability

Similar to stormwater basins, stormwater wetlands are designed to control both stormwater quantity and quality. Thus, a stormwater wetland can be used to address the minimum design standards for water quality, channel protection and flood protection for a given drainage area.

Water Quality Volume (WQv)

Pollutants are removed from stormwater runoff in a wetland through uptake by wetland vegetation and algae, vegetative filtering, and through gravitational settling in the slow moving marsh flow. Other pollutant removal mechanisms are also at work in a stormwater wetland, including chemical and biological decomposition, and volatilization. Section 4.3.4.3 provides median pollutant removal efficiencies that can be used for planning and design purposes.

Channel Protection Volume (CPv)

The storage volume above the permanent pool/water surface level in a stormwater wetland is used to provide control of the channel protection volume (CPv). This is accomplished by releasing the 1-year, 24-hour storm runoff volume over 24 hours (extended detention). It is best to do this with minimum vertical water level fluctuation, as extreme fluctuation may stress vegetation.

4.3.4.3 Pollutant Removal Capabilities

All of the stormwater wetland design variants are presumed to be able to remove 80% of the total suspended solids load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the specifications provided in this manual.

The total suspended solids design pollutant removal rate of 80% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for stormwater wetlands, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.stormwatercenter.net</u> and the International Stormwater Best Management Practices Database at <u>www.bmpdatabase.org</u>.

4.3.4.4 Application and Site Feasibility Criteria

Stormwater wetlands are generally applicable to most types of new development and redevelopment, and can be utilized in both residential and nonresidential areas. However, due to the large land requirements, wetlands may not be practical in higher density areas. The following criteria should be evaluated to ensure the suitability of a stormwater wetland for meeting stormwater management objectives on a site or development.

General Feasibility

- Suitable for Residential Subdivision Usage
- Suitable for High Density/Ultra Urban Areas, however, land requirements may preclude use
- Suitable for Commercial/Industrial use
- Suitable for Regional Stormwater Control

Physical Feasibility - Physical Constraints at Project Site

- <u>Drainage Area</u> A minimum of 25 acres and a positive water balance is needed to maintain wetland conditions; a minimum of 5 acres for pocket wetland. The local municipality may approve a smaller drainage area with an adequate water balance and anti-clogging device.
- <u>Space Required</u> Approximately 3 to 5% of the tributary drainage area
- <u>Site Slope</u> Wetlands are feasible on sites where the upstream slope (above the wetland) is no more than 15%.
- <u>Minimum Head</u> Enough elevation drop is required, from inlet to outlet, to allow hydraulic conveyance by gravity. Generally, the minimum head for a pocket wetland is 2 to 3 feet. For all other wetlands the minimum head is 3 to 5 feet.
- <u>Minimum Depth to Water Table</u> In general, no minimum separation distance to the water table is required for stormwater wetlands. In fact, water table interception may be helpful to sustain a permanent pool. However, some source water protection requirements may dictate a separation distance if there is a sensitive underlying aquifer. In such situations, an impermeable liner, or a minimum separation between 2 to 4 feet is required for portions of the wetland that will have standing water.
- <u>Soils</u> Permeable soils are not well suited for a constructed stormwater wetland without a high water table. Underlying soils of hydrologic group "C" or "D" should be adequate to maintain wetland conditions. Most group "A" soils and some group "B" soils will require a liner. Evaluation of soils should be based upon an actual subsurface analysis and permeability tests.

4.3.4.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of a stormwater wetland facility. Stormwater wetlands that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- Stormwater wetlands should normally have a minimum contributing drainage area of 25 acres or more. For a pocket wetland, the minimum drainage area is 5 acres. The local municipality may consider allowing the use of a stormwater wetland for a smaller drainage area when water availability can be confirmed (such as from a groundwater source or areas that typically have a high water table). It is important that wetlands that serve smaller drainage areas have an adequate anti-clogging device provided for the wetland outlet.
- A continuous base flow or high water table is required to support wetland vegetation. A water balance shall be performed to demonstrate that a stormwater wetland can withstand a 30-day drought at summer evaporation rates without completely drawing down (see Chapter 3 for details).
- When determining an appropriate location for a stormwater wetland, the site designer should also take into account the location and use of other site features such as natural depressions, buffers, and undisturbed natural areas. The site designer should attempt to aesthetically "fit" the wetland into the landscape.
- Stormwater wetlands shall not be located in a stream or any other navigable waters of the United States, including natural (i.e., not constructed) wetlands. Where an appeal or variance of this policy

is desired, the property owner must obtain coverage under a Section 404 permit under the Clean Water Act and/or an Aquatic Resource Alteration Permit (ARAP) and provide proof of such coverage with the Stormwater Management Plan. The local municipality may approve the conversion of an existing degraded wetland into a stormwater wetland where appropriate for local watershed restoration efforts, <u>and</u> when prior approval for such a conversion is obtained from all applicable State and Federal agencies.

- If a wetland facility is not used for overbank and extreme flood protection, it shall be designed as an off-line system to bypass the higher flows rather than passing them through the wetland system.
- Each wetland or wetland system shall be placed in a water quality easement that is recorded with the deed. The water quality easement shall be defined at the outer edge of the safety bench, or a minimum of 15 feet from the normal water pool elevation (measured perpendicular from the pool elevation boundary) if a safety bench is not included in the wetland design. Minimum setback requirements for the easement shall be as follows unless otherwise specified by the local municipality:
 - From a property line 10 feet;
 - From a public water system well TDEC specified distance per designated category;
 - From a private well 100 feet; if well is downgradient from a land use that requires a Special Pollution Abatement Permit, then the minimum setback is 250 feet;
 - From a septic system tank/leach field 50 feet.
- All utilities should be located outside of the wetland site.

B. GENERAL DESIGN

- A stormwater wetland shall consist of the following elements, design in accordance with the specifications provided in this section.
 - Shallow marsh areas of varying depths with wetland vegetation;
 - Permanent micropool;
 - Overlying zone in which runoff control volumes are stored if the wetland will be used for storage of the CPv and the locally regulated peak discharge.
 - Emergency spillway;
 - Maintenance access;
 - Safety bench;
 - Sediment forebay at each wetland inlet (unless the inlet provides less than 10% of the total inflow to the wetland);
 - Wetland buffer (this is not the same as a regulatory water quality buffer see section I-Landscaping for more information); and
 - > Appropriate wetland vegetation and native landscaping.
 - Basin/wetland systems also include stormwater basin facilities that must meet all of the design parameters in Section 4.3.1 for basin design.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

In general, wetland designs are unique for each site and application. However, there are number of geometric ratios and limiting depths for the design of a stormwater wetland that shall be observed for adequate pollutant removal, ease of maintenance, and improved safety. Table 4-8 provides the recommended physical specifications and geometry for the various stormwater wetland design variants.

Design Criteria	Shallow Wetland	ED Shallow Wetland	Basin/ Wetland	Pocket Wetland
Length to Width Ratio (minimum)	2:1	2:1	2:1	2:1
Extended Detention (ED)	No	Yes	Optional	Optional
Allocation of WQv Volume (pool/marsh/ED) in %	25/75/0	25/25/50	70/30/0 (includes basin volume)	25/75/0
Allocation of Surface Area (deepwater/low marsh/high marsh/semi-wet) ¹ in %	20/35/40/5	10/35/45/10	45/25/25/5 (includes basin surface area)	10/45/40/5
Forebay	Required	Required	Required Required	
Micropool	Required	Required	Required	Required
Outlet Configuration	Reverse-slope pipe or hooded broad-crested weir	Reverse-slope pipe or hooded broad-crested weir	Reverse-slope pipe or hooded broad-crested weir	Hooded broad- crested weir

Table 4-8.	Recommended Design Criteria for Stormwater Wetlands
	(Source: Modified from Massachusetts DEP, 1997; Schueler, 1992)

1 – <u>Depth Considerations:</u>

Deepwater: 1.5 to 6 feet below normal pool elevation Low marsh: 6 to 18 inches below normal pool elevation High marsh: 6 inches or less below normal pool elevation Semi-wet zone: Above normal pool elevation

• The stormwater wetland shall be designed with the recommended proportion of "depth zones." Each of the four wetland design variants has depth zone allocations which are given as a percentage of the stormwater wetland surface area. Target allocations are found in Table 4-8. The four basic depth zones are:

Deepwater zone

From 1.5 to 6 feet deep. Includes the outlet micropool and deepwater channels through the wetland facility. This zone supports little emergent wetland vegetation, but may support submerged or floating vegetation.

Low marsh zone

From 6 to 18 inches below the normal permanent pool or water surface elevation. This zone is suitable for the growth of several emergent wetland plant species.

High marsh zone

From 6 inches below the pool to the normal pool elevation. This zone will support a greater density and diversity of wetland species than the low marsh zone. The high marsh zone should have a higher surface area to volume ratio than the low marsh zone.

Semi-wet zone

Those areas above the permanent pool that are inundated during larger storm events. This zone supports a number of species that can survive flooding.

- A dry weather flow path shall be provided from inflow to outlet across the stormwater wetland. The path shall have a minimum length to width ratio of 2:1. Ideally, the path length to width ration should be greater than 3:1. This path may be achieved by constructing internal dikes or berms, using marsh plantings, and/or by using multiple cells. Finger dikes are commonly used in surface flow systems to create serpentine configurations and prevent short-circuiting. Microtopography (contours along the bottom of a wetland or marsh that provide a variety of conditions for different species needs and increases the surface area to volume ratio) is encouraged to enhance wetland diversity.
- A micropool having a depth no greater than 4 to 6 feet shall be included in the design at the outlet to prevent the outlet from clogging and resuspension of sediments, and to mitigate thermal effects.
- Maximum depth of any permanent pool areas shall not exceed 6 feet.
- The volume that is handled through extended detention shall not comprise more than 50% of the total WQv, and its maximum water surface elevation shall not extend more than 3 feet above the normal pool. Storage of CPv and the locally regulated peak discharge can be provided above the maximum WQv elevation within the wetland.
- The perimeter of all deep pool areas (4 feet or greater in depth) shall be surrounded by safety and aquatic benches similar to those for stormwater basins (see subsection 4.3.1).
- The contours of the wetland shall be irregular to provide a more natural landscaping effect.

D. PRETREATMENT / INLETS

- Sediment regulation and removal is critical to sustain stormwater wetlands. A wetland facility shall have a sediment forebay or equivalent upstream pretreatment. In some cases, a pocket wetland design may not allow construction of a sediment forebay because of space limitations on small sites. In this case, a smaller "cattail" forebay is recommended to capture trash, debris and oil.
- A sediment forebay is designed to remove incoming sediment from the stormwater flow prior to dispersal into the wetland. The forebay shall consist of a separate cell, formed by an acceptable barrier. A forebay shall be provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the wetland facility.
- The forebay shall be sized to contain 0.1 inches per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep. The pretreatment storage volume is part of the total WQv design requirement and may be subtracted from the WQv for wetland storage sizing.
- A fixed vertical sediment depth marker shall be installed in the forebay to measure sediment deposition over time. The bottom of the forebay may be hardened (e.g., using concrete, paver blocks, etc.) to make sediment removal easier.
- Inflow channels shall be stabilized with flared riprap aprons, or the equivalent. Inlet pipes to the basin can be partially submerged. Exit velocities from the forebay to the wetland shall be nonerosive.

E. OUTLET STRUCTURES

• Flow control from a stormwater wetland is typically accomplished with the use of a concrete or corrugated metal riser and barrel. The riser is a vertical pipe or inlet structure that is attached to the base of the micropool with a watertight connection. The outlet barrel is a horizontal pipe attached to the riser that conveys flow under the embankment (see Figure 4-20). The riser shall be located within the embankment for maintenance access, safety and aesthetics.

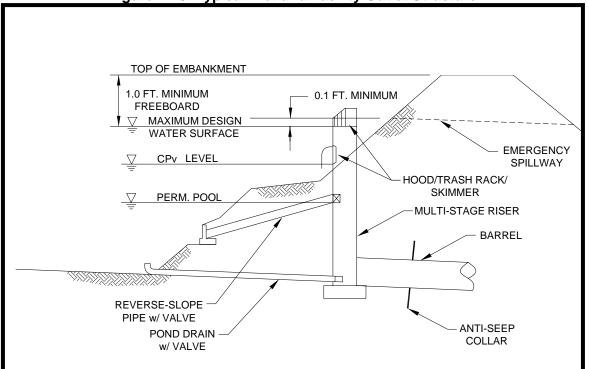


Figure 4-20. Typical Wetland Facility Outlet Structure

 A number of outlets at varying depths in the riser provide internal flow control for routing of WQv, CPv, and the locally regulated peak discharge. The number of orifices can vary and is usually a function of the wetland design.

For shallow and pocket wetlands, the riser configuration is typically comprised of a channel protection outlet (usually an orifice) and overbank flood protection outlet (often a slot or weir). The channel protection orifice is sized to release the channel protection storage volume over a 24-hour period. Since the water quality volume is fully contained in the permanent pool, no orifice sizing is necessary for this volume. As runoff from a water quality event enters the wet basin, it simply displaces that same volume through the channel protection orifice. Thus an off-line shallow or pocket wetland providing <u>only</u> water quality treatment can use a simple overflow weir as the outlet structure.

In the case of an extended detention (ED) shallow wetland; there is generally a need for an additional outlet (usually an orifice) that is sized to pass the extended detention water quality volume that is surcharged on top of the permanent pool. Flow will first pass through this orifice, which is sized to release the water quality ED volume in 24 hours. The preferred design is a reverse slope pipe attached to the riser, with its inlet submerged 1 foot below the elevation of the permanent pool to prevent floatables from clogging the pipe and to avoid discharging warmer water at the surface of the basin. The next outlet is sized for the release of the channel protection storage volume. The outlet (often an orifice) invert is located at the maximum elevation associated with the extended detention water quality volume and is sized to release the channel protection storage volume over a 24-hour period.

Alternative hydraulic control methods to an orifice can be used and include the use of a broad-crested rectangular, V-notch, proportional weir, or an outlet pipe protected by a hood that extends at least 12 inches below the normal pool.

- The water quality outlet (if design is for an ED shallow wetland) and channel protection outlet shall be fitted with adjustable gate valves or other mechanism that can be used to adjust detention time.
- Higher flows (locally regulated peak discharge) pass through openings or slots protected by trash racks that are located further up on the riser.
- After entering the riser, flow is conveyed through the barrel and is discharged downstream. Anti-seep collars shall be installed on the outlet barrel to reduce the potential for pipe failure.
- Riprap, plunge pools or pads, or other energy dissipators shall be placed at the outlet of the barrel to prevent scouring and erosion. If a wetland facility discharges to a stream that has dry weather flow at any time during the year, care should be taken to minimize land disturbance along the downstream channel, and to reestablish a forested riparian zone in the shortest possible distance. See Chapter 7 (Construction Site Stormwater Management) and Chapter 6 (Water Quality Buffers) for more guidance on outlet designs and rules and regulations for disturbances in a water quality buffer.
- The wetland facility shall have a bottom drain pipe located in the micropool with an adjustable valve that can completely or partially drain the wetland within 24 hours.
- The wetland drain shall be sized one pipe size greater than the calculated design diameter. The drain valve is typically a handwheel activated knife or gate valve. Valve controls shall be located inside of the riser at a point where they (a) will not normally be inundated and (b) can be operated in a safe manner.

See the design procedures in subsection 4.3.4.6 as well as Chapter 3 for additional information and specifications on basin routing and outlet operations.

F. EMERGENCY SPILLWAY

- An emergency spillway shall be included in the stormwater wetland design to safely pass the locally regulated peak discharge. The spillway prevents the wetland's water levels from overtopping the embankment and causing structural damage. The emergency spillway shall be located so that downstream structures will not be impacted by spillway discharges.
- A minimum of 1 foot of freeboard must be provided, measured from the top of the water surface elevation for the locally regulated peak discharge to the lowest point of the dam embankment, not counting the emergency spillway.

G. MAINTENANCE ACCESS

- A minimum 20' wide maintenance right of way or easement shall be provided from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.
- The maintenance access shall extend to the forebay, safety bench, riser, and outlet, and, to the extent feasible, be designed to allow vehicles to turn around.
- Access to the riser shall be provided by lockable manhole covers, and manhole steps within easy reach of valves and other controls.

H. SAFETY FEATURES

• All embankments and spillways shall be designed to the requirements set by TDEC's Safe Dams Act of 1973.

- Fencing of wetlands is not generally desirable, but may be required by the local municipality. A preferred method is to manage the contours of deep pool areas through the inclusion of a safety bench (see above) to eliminate dropoffs and reduce the potential for accidental drowning. In addition, the safety bench may be landscaped to deter access to the pool.
- All outlet structures shall be designed so as not to permit access by children.

I. LANDSCAPING

- A landscaping plan shall be developed that indicates the methods used to establish and maintain wetland coverage. Minimum considerations of the plan include: delineation of landscaping zones, selection of corresponding plant species, planting plan, sequence for preparing wetland bed (including soil amendments, if needed) and sources of plant material. More information on wetland plants can be found at the following websites:
 - <u>http://wetlands.fws.gov/</u>
 - http://www.npwrc.usgs.gov/resource/plants/floraso/species.htm
 - > http://www.tva.gov/river/landandshore/stabilization/plantsearch.htm
- Landscaping zones include low marsh, high marsh, and semi-wet zones. The low marsh zone ranges from 6 to 18 inches below the normal pool. This zone is suitable for the growth of several emergent plant species. The high marsh zone ranges from 6 inches below the pool up to the normal pool. This zone will support greater density and diversity of emergent wetland plant species. The high marsh zone should have a higher surface area to volume ratio than the low marsh zone. The semi-wet zone refers to those areas above the permanent pool that are inundated on an infrequent basis and can be expected to support wetland plants.
- The landscaping plan should provide elements that promote greater wildlife and waterfowl use within the wetland and buffers.
- Woody vegetation shall not be planted on the embankment or allowed to grow within 15 feet of the toe of the embankment and 25 feet from the principal spillway structure.
- Water quality buffers, as defined and described in Chapter 6 of this manual, are not required for wetlands that are constructed for the purpose of stormwater quality or quantity control. However, it should be noted that vegetated buffers can be utilized for water quality treatment and can result in a volume credit that reduces the WQv. The criteria for the vegetated buffer credit are presented in Chapter 5 of this manual.
- Existing trees should be preserved in the wetland area during construction, or should be replanted. It is desirable to locate forest conservation areas adjacent to wetlands. To discourage resident waterfowl populations, the wetland buffer can be planted with trees, shrubs and native ground covers.
- The soils in planting areas within and surrounding a wetland are often severely compacted during the construction process to ensure stability. The density of these compacted soils is so great that it effectively prevents root penetration and therefore may lead to premature mortality or loss of vigor. Consequently, it is advisable to excavate large and deep holes around the proposed planting sites and backfill these with <u>uncompacted</u> topsoil.
- Native species of fish can be stocked in the permanent pool to aid in mosquito prevention The Northeast Tennessee Stormwater Planning Group strongly discourages the use non-native fish species in a stormwater facility due to the possibility that the fish will enter downstream receiving waters.
- A fountain or aerator may be used for oxygenation of water in the permanent pool and to aid in mosquito breeding prevention.

J. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

There are a number of additional site specific design criteria and issues (listed below) that must be considered in the design of wetlands.

Physiographic Factors - Local terrain design constraints

- Low Relief Providing wetland drain can be problematic
- <u>Karst</u> Requires poly or clay liner to sustain a permanent pool of water and protect aquifers; limits on ponding depth; geotechnical tests may be required. Stormwater wetlands are the preferred BMP over basins in the karst areas.

<u>Soils</u>

• Hydrologic group "A" soils and some group "B" soils may require liner (not relevant for pocket wetland)

Special Watershed Considerations

 <u>Wellhead Protection</u> – The potential for groundwater contamination (in required wellhead protection areas) shall be reduced through pretreatment of runoff, and installation of a liner for type "A" and "B" soils; Pretreat hotspots; 2 to 4 foot separation distance from water table.

4.3.4.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate the WQv, CPv, and the locally regulated peak discharge, in accordance with the guidance presented in Chapter 3.

<u>Step 2.</u> Determine if the development site and conditions are appropriate for the use of a stormwater wetland

Consider the Application and Site Feasibility Criteria in subsections 4.3.4.4 and 4.3.4.5-A (Location and Siting).

Step 3. Confirm design criteria and applicability

Consider any special site-specific design conditions/criteria from subsection 4.3.4.5-J (Additional Site-Specific Design Criteria and Issues).

Check with the local municipality, TDEC, or other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 4. Determine pretreatment volume

A sediment forebay is provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the basin. The forebay shall be sized to contain 0.1 inches per impervious acre (363 ft^3) of contributing drainage and shall be 4 to 6 feet deep. The forebay storage volume counts toward the total WQv requirement and may be subtracted from the WQv for subsequent calculations.

Step 5. Allocate the WQv volume among marsh, micropool, and ED volumes

Use recommended criteria from Table 4-8 in Section 4.3.4.5.

<u>Step 6.</u> Determine wetland location and preliminary geometry, including distribution of wetland depth <u>zones</u>

This step involves initially laying out the wetland design and determining the distribution of wetland surface area among the various depth zones (high marsh, low marsh, and deepwater). Set WQv

permanent pool elevation (and WQv-ED elevation for ED shallow wetland) based on volumes calculated earlier.

Step 7. Compute extended detention orifice release rate(s) and size(s), and establish CPv elevation

Shallow Wetland and Pocket Wetland: The CPv elevation is determined from the stage-storage relationship and the orifice is then sized to release the channel protection storage volume over a 24-hour period. The channel protection orifice should have a minimum diameter of 3 inches and should be adequately protected from clogging by an acceptable external trash rack. A reverse slope pipe attached to the riser, with its inlet submerged 1 foot below the elevation of the permanent pool is a recommended design. The orifice diameter may be reduced to 1 inch if internal orifice protected by wirecloth and a stone filtering jacket). Adjustable gate valves can also be used to achieve this equivalent diameter.

ED Shallow Wetland: Based on the elevations established in Step 6 for the extended detention portion of the water quality volume, the water quality orifice is sized to release this extended detention volume in 24 hours. The water quality orifice should have a minimum diameter of 3 inches, and should be adequately protected from clogging by an acceptable external trash rack. A reverse slope pipe attached to the riser, with its inlet submerged one foot below the elevation of the permanent pool, is a recommended design. The orifice diameter may be reduced to 1 inch if internal orifice protection is used (i.e., an over-perforated vertical stand pipe with ½-inch orifices or slots that are protected by wire cloth and a stone filtering jacket). Adjustable gate valves can also be used to achieve this equivalent diameter. The CPv elevation is then determined from the stage-storage relationship. The invert of the channel protection orifice is located at the water quality extended detention elevation, and the orifice is sized to release the channel protection storage volume over a 24-hour period.

Step 8. Calculate the locally regulated peak discharge release rates and water surface elevations

Set up a stage-storage-discharge relationship for the control structure for the extended detention orifice(s) and the 25-year storm.

Step 9. Design embankment(s) and spillway(s)

Calculate the locally regulated peak discharge water surface elevation, set the top of the embankment elevation, and size the emergency spillway, ensuring safe passage of the locally regulated peak discharge. Set the invert elevation of the emergency spillway 0.1 foot above the locally regulated peak discharge water surface elevation.

Step 10. Investigate potential basin/wetland hazard classification

The design and construction of stormwater management facilities are required to follow the latest version of the TDEC Rules and Regulations Application to the Safe Dams Act of 1973.

Step 11. Design inlets, sediment forebay(s), outlet structures, maintenance access, and safety features.

See subsection 4.3.4.5-D through H for more details.

Step 12. Design landscape plan

A landscape plan for a stormwater wetland and its buffer shall be prepared to indicate how aquatic and terrestrial areas will be stabilized and established with vegetation. See subsection 4.3.4.5-I (Landscaping) for more details.

4.3.4.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.4.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of stormwater wetlands as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary. This page provides guidance on maintenance activities that are typically required for stormwater wetlands, along with a suggested frequency for each activity. Individual wetlands may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the basin in proper operating condition at all times.

Ins	pection Activities	Suggested Schedule
•	After several storm events or an extreme storm event, inspect for: bank stability; signs of erosion; vegetation growth; drainage system function; and structural damage.	As needed
•	Inspect for: invasive vegetation; trash and debris; clogging of the inlet/outlet structures and any pilot or low flow channels; excessive erosion; sediment accumulation in the basin, forebay and inlet/outlet structures; tree growth on dam or embankment; the presence of burrowing animals; standing water where there should be none; vigor and density of the grass turf on the basin side slopes and floor; differential settlement; cracking; leakage; and slope stability.	Semi-annually
•	Inspect the inlet/outlet structures, pipes, sediment forebays, and upstream, downstream, and pilot channels are free of debris and are operational.	
٠	Check for signs of unhealthy or overpopulation of plants and/or fish (if utilized).	
٠	Note signs of pollution, such as oil sheens, discolored water, or unpleasant odors.	Annually
٠	Check sediment marker(s) for sediment accumulation in the facility and forebay.	Annually
٠	Check for proper operation of control gates, valves or other mechanical devices.	
•	Note changes to the wetland or contributing drainage area as such changes may affect wetland performance.	
Ma	ntenance Activities	Suggested Schedule
•	Replace wetland vegetation to maintain at least 50% surface area coverage in wetland plants after the second growing season.	One-time
•	Clean and remove debris from inlet and outlet structures. Mow side slopes (embankment) and maintenance access. Periodic mowing is only required along maintenance rights-of-way and the embankment. The wetland buffer surrounding the wetland can be managed as a meadow (mowing every other year) or forest.	Frequently (3 to 4 times per year)
•	Supplement wetland plants if a significant portion have not established (at least 50% of the surface area). Remove unhealthy, invasive or nuisance plant species and replant with appropriate species if necessary. Harvest plant species if vegetation becomes too thick causing flow backup and flooding, or an overabundance of undesirable wildlife.	Annually (if needed)
•	Repair damage to basin, outlet structures, embankments, control gates, valves, or other mechanical devices; repair undercut or eroded areas. Remove litter, debris, pollutants as appropriate.	As Needed
•	Remove sediment from the forebay. Sediments excavated from stormwater wetlands that receive treated runoff from hotspot land uses are not considered toxic or hazardous material and can be safely disposed of by either land application or landfilling.	As needed (typically every 5 to 7 years)
•	Monitor sediment accumulations, and remove sediment when the volume in the wetland, forebay, or micropool has become reduced significantly or the wetland area is not providing a healthy habitat for vegetation and fish (if used). Discharges of turbid or untreated stormwater from the wetland may be considered an illegal discharge, as per the local stormwater management regulations. Care should be exercised during wetland drawdowns to prevent downstream discharge of sediments, anoxic water, or high flows with erosive velocities. The local municipality should be notified before draining a stormwater wetland.	As needed (typically every 20 to 50 years)

The local municipality encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of stormwater wetlands. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the wetland. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) STORMWATER WETLAND INSPECTION CHECKLIST

Location:	

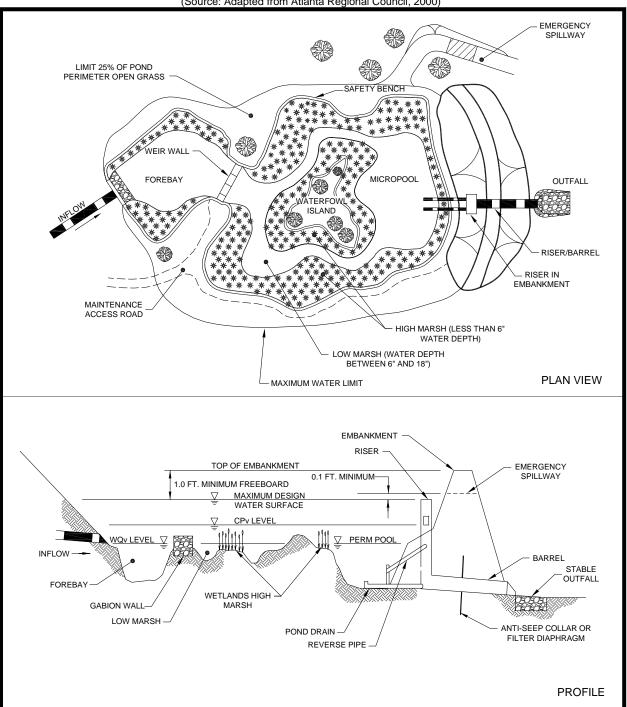
Owner Change since last inspection? Y N

Owner Name, Address, Phone:	

Date: _____ Time: _____ Site conditions:_____

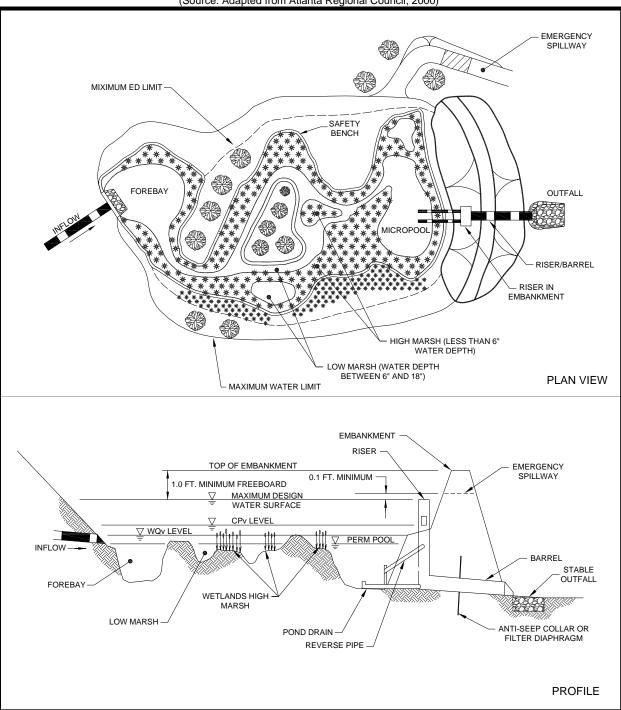
Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Embankment and Emergency Spillway	•	
Healthy vegetation?		
Erosion on embankment?		
Animal burrows in embankment?		
Cracking, sliding, bulging of dam?		
Blocked or malfunctioning drains?		
Leaks or seeps on embankment?		
Obstructions of spillway(s)?		
Erosion in/around emergency spillway?		
Other (describe)?		
Inlet/Outlet Structures and Channels		
Clear of debris and functional?		
Trash rack clear of debris and functional?		
Sediment accumulation?		
Condition of concrete/masonry?		
Metal pipes in good condition?		
Control valve operation?		
Drain valve operation?		
Outfall channels function, not eroding?		
Other (describe)?		
Sediment Forebays		
Evidence of sediment accumulation?		
Permanent Pool Areas (if applicable)		
Undesirable vegetation growth?		
Visible pollution?		
Shoreline erosion?		
Erosion at outfalls into wetland?		
Headwalls and endwalls in good condition?		
Encroachment by other activities?		
Evidence of sediment accumulation?		
Wetland Vegetation Areas		
Vegetation adequate?		
Undesirable vegetation growth?		
Excessive sedimentation?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

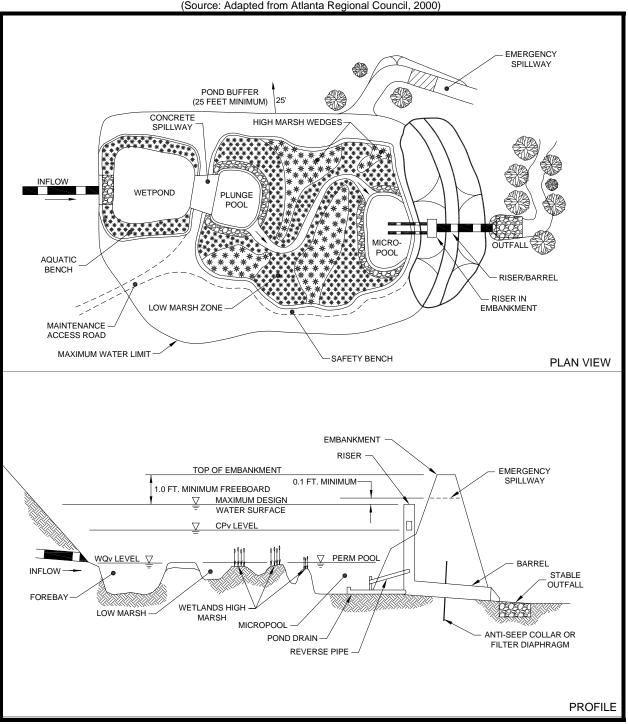

Corrective Action Needed	Due Date
	•

Inspector Signature:_____

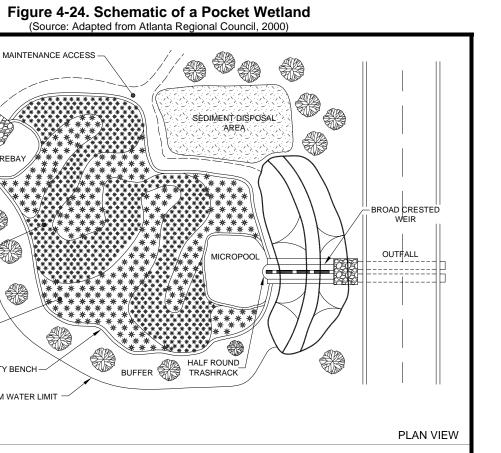
Inspector Name (printed)_____

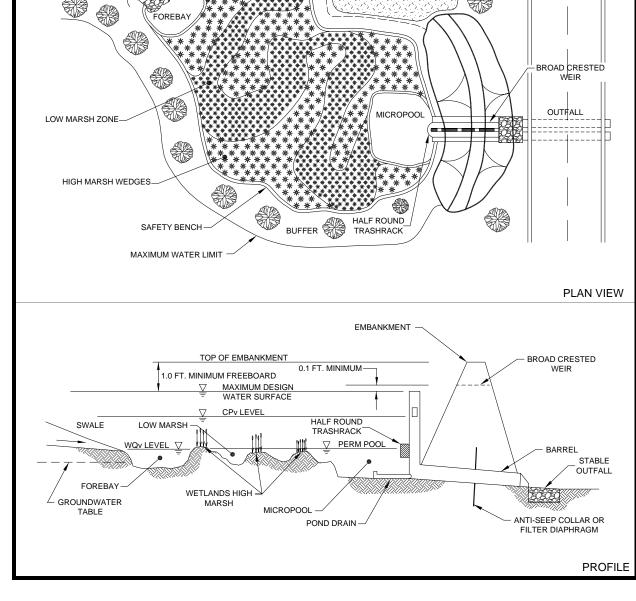


4.3.4.8 Example Schematics



(Source: Adapted from Atlanta Regional Council, 2000)





4.3.4.9 Design Form

The local municipality recommends the use of the following design procedure forms when designing a stormwater wetland. Proper use and completion of the form may allow a faster review of the Water Quality Management Plan by the local municipality.

PRELIMINARY HYDROLOGIC	CALCULAT	IONS					
	a. Compute WQv volume requirements Compute Runoff Coefficient, Rv Compute WQv						acre-ft
1 0	Compute average release rate Compute storage volume required for locally regulated						acre-ft cfs acre-ft acre-ft
STORMWATER WETLAND D	ESIGN						
2. Is the use of a stormwater w	etland approp	vriate?			See subsection	ons 4.3.4.4 an	d 4.3.4.5 - A
3. Confirm design criteria and	applicability.				See subsection	on 4.3.4.5 - J	
4. Pretreatment Volume (Forel V _{pre} =(I)(.1")(1'/12")	bay)				V _{pre} =		acre-ft
5. Allocation of pool, Marsh, ar	nd ED Volume	S					
Shallow Wetland	1	0.2(WQv)-Vo 0.7(WQv)-Vo			Vol _{pool} = Vol _{marsh} =		acre-ft acre-ft
Shallow ED Wetland	Vol _{marsh} =	0.1(WQv)-Vo 0.3(WQv)-Vo 0.5(WQv)-Vo	l _{pre}		Vol _{marsh} =		acre-ft acre-ft acre-ft
Pocket Wetland	P	0.1(WQv)-Vo 0.8(WQv)-Vo	P		Vol _{pool} = Vol _{marsh} =		acre-ft acre-ft
6. Allocation of Surface Area							
Pool/Deepwater Wetland Zo Low Marsh Wetland Zone (6 High Marsh Wetland Zone (Semi-Wet Wetland Zone (at Conduct grading and determ for marsh zones (and ED if a	5-18 inches de D-6 inches dee pove pool dept nine storage av	ep) ep) th) vailable		Area _{low} = Area _{high} =	ration-storage ta	acres, %= acres, %= acres, %= able and curve	
orifice size		D t					
Elevation Area MSL ft ²	Ave. Area ft ²	Depth ft	Volume ft ³	Cumulative Volume ft ³	Cumulative Volume acre-ft	Volume Perman acr	ent Pool

Design Procedure Form: Stormwater Wetlands

Design Procedure Form: Stormwater Wetlands (continued)

7	WQv Orifice	Computations								
	Average ED release rate (if applicable)						release rate=		cfs	
	Average head, h = (ED elev Permanent pool elev.) / 2						head=		ft	
	Area of orifice from orifice equation						Area=		ft ²	
	Q=CA(2gh)0.8			th orifice con	dition			diameter		inches
										-
	Compute rele	ease rate for CP	v-ED control	and						
	establish CP	v elevation						WSEL=		ft-NGVD
	Release rate	=						release rate=		cfs
	-	d, h = (ED elev.		pool elev.) /	2			head=		ft
		e from orifice eq	uation					Area=		ft2
	Q=CA(2gh) ^{0.8}	5	C varies wi	th orifice con	dition			diameter		inches
8.		uired local muni	cipality peak	discharge			:	Set up a stage-	-storage-dischai	rge relationship
	release rates	and WSELs								
	Elevation	Storage	Low Flow	Riser			Barre		Emergency	Total
	Elevation	otorage	WQv-ED	CPv_ED	High	Storage	Inlet	Pipe	Spillway	Outflow
			IT QT ED	01 120	Orif.	Weir	iniot	r ipo	opinitay	ounow
	MSL	acre-ft	H(ft) Q(cfs)	H(ft) Q(cfs)	HQ	HQ	H(ft) Q(cfs)	H(ft) Q(cfs)	H(ft) Q(cfs)	Q (cfs)
	<u>[</u>									•
	1 1	v. Peak dischar	ge - (WQv-E	D release +				_		
	CPv-ED relea	ase)						Qp _{peak} =		cfs
	Maximum he			3/2				H=		ft ft
	Use weir equ	ation for slot len	gtn (Q=CLH)				L=		T
	Check inlet c	ondition						Lice outvort a	lesign guidanc	o from local
	Check outlet							municipality	lesign guluane	e nom local
	Check Outlet	condition						municipality		
0	Sizo omorgo	ncy spillway usir	a the local r	nunicipality n	aak			0 -00		cfs
9.	•	d set top of emb	•		Jan					ft
	•	pillway elevation								ft
	energency s	piliway elevation	Daseu on v	/ 3⊏L _{peak}				⊏lembank		ft
								⊏I _{ES} =		_n
10	Investigate n	otential pond ha	zard classific	nation				Soo TN Safo	Dams Act of 19	72
10.	investigate p		zaiù ciassiii	allon				See IN Sale	Dams Act of 18	<i>i</i> 15
11	Design inlets	sediment foreb	avs outlets	tructures				See subsecti	on 4.3.4.5 - D ti	brough H
	 Design inlets, sediment forebays, outlet structures, maintenance access, and safety features 				See Subsecti	011 4.3.4.3 - D 1	noughn			
12	Design veget	ation according	to guidance	provided in						
		Restoration we	-							
	•			stabilizatio	n/inde	x.htm				
	www.tva.com/river/landandshore/stabilization/index.htm						I			

4.3.4.10 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2000.
- Center for Watershed Protection. *Manual Builder.* Stormwater Manager's Resource Center, Accessed July 2005. *www.stormwatercenter.net*

Massachusetts Department of Environmental Protection and the Massachusetts Office of Coastal Zone Management. *Stormwater Management -- Volume One: Stormwater Policy Handbook, and Volume Two: Stormwater Technical Handbook,* 1997.

Schueler, T.J. *Design of Stormwater Wetland Systems*, Metrolpolitan Washington Council of Governments, Washington, D.C., April, 1992.

4.3.4.11 Suggested Reading

- Adams, L., Dove L.E., D.L. Leedy, and T. Franklin. *Urban Wetlands for Stormwater Control and Wildlife Enhancement Analysis and Evaluation.* Urban Wildlife Research Center, Columbia, Maryland, 1983.
- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures*. Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- US EPA. Storm Water Technology Fact Sheet: Storm Water Wetlands. EPA 832-F-99-025, Office of Water, 1999.
- Faulkner, S. and C. Richardson. Physical and Chemical Characteristics of Freshwater Wetland Soils. Constructed Wetlands for Wastewater Treatment, ed. D. Hammer, Lewis Publishers, 831 pp, 1991.
- Guntenspergen, G.R., F. Stearns, and J. A. Kadlec. *Wetland Vegetation.* Constructed Wetlands for Wastewater Treatment, ed. D. A. Hammer, Lewis Publishers, 1991.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.

This page left intentionally blank

4.3.5 Bioretention Areas

General Application Water Quality BMP

Description: Shallow stormwater basin or landscaped area that utilizes engineered soils and vegetation to capture and treat runoff.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum contributing drainage area of 5 acres.
- Often located in "landscaping islands."
- Treatment area consists of grass filter, sand bed, ponding area, organic/mulch layer, planting soil, and vegetation.
- Typically requires 5 feet of elevation difference from inflow to outflow.
- Planting soils must meet specified criteria; no restrictions on surrounding soils.
- Use of native plants is recommended.

ADVANTAGES / BENEFITS:

- Applicable to small drainage areas.
- Good for highly impervious areas, particularly parking lots.
- Good retrofit capability.
- Relatively low maintenance requirements.
- Can be planned as an aesthetic feature.

DISADVANTAGES / LIMITATIONS:

- Requires extensive landscaping.
- Not recommended for areas with steep slopes.

MAINTENANCE REQUIREMENTS:

• Inspect and repair/replace treatment area components.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	*
Detention/Retention:	Yes

✤ in certain situations

Accepts hotspot runoff: Yes

COST CONSIDERATIONS

Land Requirement:	Med
Capital Cost:	Med
Maintenance Burden:	Low

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:

85%

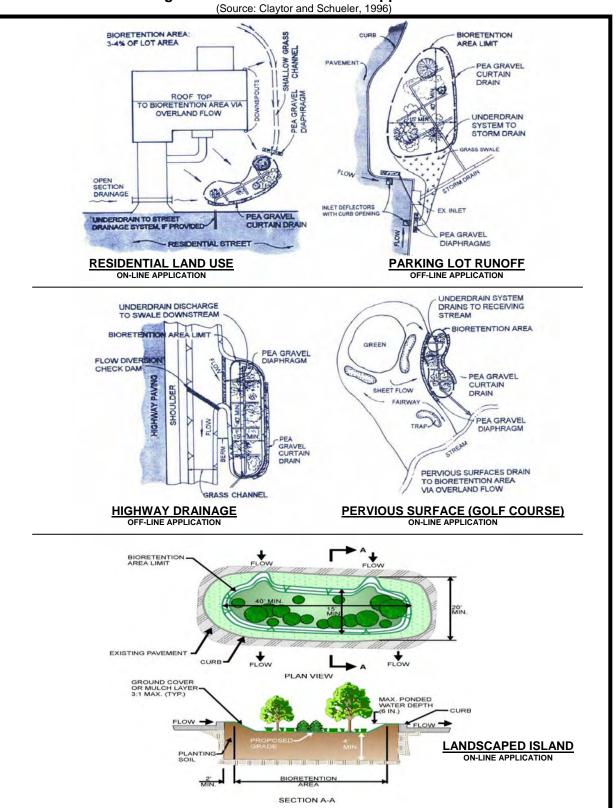
4.3.5.1 General Description

Bioretention areas (also referred to as bioretention filters or rain gardens) are structural stormwater controls that capture and temporarily store the water quality volume (WQv) using soils and vegetation in shallow basins or landscaped areas to remove pollutants from stormwater runoff.

Bioretention areas are engineered facilities in which runoff is conveyed as sheet flow to the "treatment area," which consists of a grass buffer strip, ponding area, organic or mulch layer, planting soil, and vegetation. An optional sand bed can also be included in the design to provide aeration and drainage of the planting soil. The filtered runoff is typically collected and returned to the conveyance system, though it can also permeate into the surrounding soil in areas with porous soils.

There are numerous design applications, both on- and off-line, for bioretention areas. These include use on single-family residential lots (rain gardens), as off-line facilities adjacent to parking lots, along road drainage swales, within larger landscaped pervious areas, and as landscaped islands in impervious or high-density environments. Figures 4-25 and 4-26 illustrate a number of examples of bioretention facilities in both photographs and drawings.

Single-Family Residential 'Rain Garden"


Landscaped Island

Newly Constructed Bioretention Area

Newly Planted Bioretention Area after Storm Event

4.3.5.2 Stormwater Management Suitability

Bioretention areas are designed primarily for stormwater quality and can provide limited runoff quantity control, primarily for smaller storm events. These facilities may sometimes be used to partially or completely meet channel protection volume (CPv) requirements on smaller sites. However, bioretention areas will typically need to be used in conjunction with other structural BMPs to provide channel protection as well as protection of the locally regulated peak discharge. It is important to ensure that a bioretention area safely bypasses higher flows.

Water Quality (WQv)

Bioretention is an excellent stormwater treatment practice due to the variety of pollutant removal mechanisms. Each of the components of the bioretention area is designed to perform a specific function (see Figure 4-27). The grass filter strip (or grass channel) reduces incoming runoff velocity and filters particulates from the runoff. The ponding area provides for temporary storage of stormwater runoff prior to its evaporation, infiltration, or uptake and provides additional settling capacity. The organic or mulch layer provides filtration as well as an environment conducive to the growth of microorganisms that degrade hydrocarbons and organic material. The planting soil in the bioretention facility acts as a filtration system, and clay in the soil provides adsorption sites for heavy metals, nutrients and other pollutants. Both woody and herbaceous plants in the ponding area provide vegetative uptake of runoff and pollutants and also serve to stabilize the surrounding soils. Finally, an underdrain system provides for positive drainage and aerobic conditions in the planting soil.

Section 4.3.5.3 provides median pollutant removal efficiencies that can be used for planning and design purposes.

Channel Protection (CPv)

For smaller sites, a bioretention area may be designed to capture the entire channel protection volume (CPv) in either an off or on-line configuration. Given that a bioretention facility must be designed to completely drain over 48 hours, the requirement of extended detention of the 1-year, 24-hour storm runoff volume will be met. For larger sites or where only the WQv is diverted to the bioretention facility, another structural BMP must be used to provide CPv extended detention.

4.3.5.3 Pollutant Removal Capabilities

Bioretention areas are presumed to be able to remove 85% of the total suspended solids load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the recommended specifications. Undersized or poorly designed bioretention areas can reduce TSS removal performance.

The total suspended solids design pollutant removal rate of 85% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for bioretention areas, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.stormwatercenter.net</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.3.5.4 Application and Site Feasibility Criteria

Bioretention areas are suitable for many types of development, from single-family residential to highdensity commercial projects. Bioretention is also well suited for small lots, including those of 1 acre or less. Because of its ability to be incorporated in landscaped areas, the use of bioretention is extremely flexible. Bioretention areas are an ideal structural stormwater BMP for use as roadway median strips and parking lot islands and are also good candidates for the treatment of runoff from pervious areas, such as a lawn area. Bioretention can also be used to retrofit existing development with stormwater quality treatment capacity.

The following criteria should be evaluated to ensure the suitability of a bioretention area for meeting stormwater management objectives on a site or development.

General Feasibility

- Suitable for Residential Subdivision Usage YES
- Suitable for Regional Stormwater Control NO

Physical Feasibility - Physical Constraints at Project Site

- <u>Drainage Area</u> 5 acres maximum; 0.5 to 2 acres are preferred.
- <u>Space Required</u> Approximately 5% of the tributary impervious area is required; minimum 200 ft² area for small sites (10 feet x 20 feet).
- <u>Site Slope</u> No more than 6% slope in the contributing drainage area.
- <u>Minimum Head</u> Elevation difference needed at a site from the inflow to the outflow underdrain or peak gravel under-layer: 5 feet.
- <u>Minimum Depth to Water Table</u> A separation distance of 2 feet is recommended between the bottom of the bioretention facility and the elevation of the seasonally high water table.
- <u>Soils</u> No restrictions; engineered media required. Karst areas may require a liner.

Other Constraints / Considerations

<u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of hotspot runoff. May require liner for type "A" and "B" soils; pretreat hotspots; 2 to 4 foot separation distance from water table. Wellhead protection areas may require guidance from other agencies, such as TDEC.

4.3.5.5 Planning and Design Standards

The following standards are to be considered **minimum** standards for the design of a bioretention facility. Consult with the local municipality to determine if there are any variations to these criteria or additional standards that must be followed.

A. LOCATION AND SITING

- Bioretention areas should have a maximum contributing drainage area of 5 acres or less; 0.5 to 2 acres are preferred. Multiple bioretention areas can be used for larger areas.
- Bioretention areas can either be used to capture sheet flow from a drainage area or function as an off-line device. On-line designs should be limited to a maximum drainage area of 0.5 acres.
- When used in an off-line configuration, the WQv is diverted to the bioretention area through the use of a flow splitter or other means. Stormwater flows greater than the WQv are diverted to other controls or downstream (see Chapter 4, Section 4.2 for more discussion of off-line systems and design guidance for diversion structures and flow splitters).
- Bioretention systems are designed for intermittent flow and must be allowed to drain and reaerate between rainfall events. Bioretention systems will not be allowed for sites that have a continuous flow from groundwater, sump pumps, or other sources.
- Aesthetic considerations should be taken into account in the siting and design of bioretention areas. Elevations must be carefully determined to ensure that the desired runoff flow enters the facility with no more than the maximum design depth.

B. GENERAL DESIGN

- A bioretention area shall consist of:
 - (1) A grass filter strip (or grass channel) between the contributing drainage area and the ponding area,
 - (2) A ponding area containing vegetation with a planting soil bed,
 - (3) An organic/mulch layer,
 - (4) A gravel and perforated pipe underdrain system to collect runoff that has filtered through the soil layers (bioretention areas can optionally be designed to infiltrate into the soil see description of infiltration trenches for infiltration criteria).
- A bioretention area design may also include some of the following:
 - (1) An optional sand filter layer with geotextile fabric to spread flow, filter runoff, and aid in aeration and drainage of the planting soil, located between the underdrain and planting soil.
 - (2) A pea gravel diaphragm at the beginning of the grass filter strip to reduce runoff velocities and spread flow into the grass filter.
 - (3) Energy dissipation techniques will be required for contributing drainage areas that have a 6% slope or greater.
 - (4) Inflow diversion or an overflow structure(s) that are designed based on one of five main methods:
 - Use of a flow diversion structure;
 - Use of curbed pavements as an inlet deflector (see Figure 4-30);
 - Use of a slotted curb along with the design of parking lot grades to divert the WQv into the bioretention facility. Additional runoff will be bypassed to a downstream catch basin inlet. The alternative requires temporary ponding in the parking lot (see Figure 4-29);
 - Figure 4-29 illustrates the use of a short deflector weir (maximum height 6 inches) designed to divert the maximum water quality peak flow into the bioretention area;
 - Use of an in-system overflow consisting of an overflow catch basin inlet and/or a pea gravel curtain drain overflow.

See Figure 4-27 for an overview of the various components of a bioretention area. Figure 4-28 provides a plan view and profile schematic of an on-line bioretention area. An example of an off-line facility is shown in Figure 4-29.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

- The minimum dimensions of a bioretention area shall be 10 feet wide by 20 feet long, or 200 square feet in area for roughly circular designs. All designs, except small residential applications such as bio-retention areas placed in cul-de-sac islands to treat runoff from the surrounding street, shall maintain a length to width ratio of at least 2:1.
- The planting soil filter bed shall be sized using a Darcy's Law equation with a filter bed drain time of 48 hours and a coefficient of permeability (k) of 0.5 ft/day.
- The maximum ponding depth of a bioretention area is 6 inches.
- The planting soil bed shall be at least 4 feet in depth when trees are planted in the bioretention area but can be a minimum of 2 feet deep in facilities that will utilize plants other than trees. Planting soils shall consist of a sandy loam, loamy sand, or loam texture with a clay content ranging from 10 to 25%. The soil must have an infiltration rate of at least 0.5 inches per hour and a pH between 5.5 and 6.5. In addition, the planting soil must have a 1.5 to 3% organic content and a maximum 500 ppm concentration of soluble salts.

- The mulch layer must consist of 2 to 4 inches of commercially available fine shredded hardwood mulch or shredded hardwood chips.
- The sand bed must be 12 to 18 inches thick. Sand shall be clean and have less than 15% silt or clay content.
- Pea gravel for the diaphragm and curtain, when used, should be ASTM D 448 size No. 6 (1/8" to 1/4").
- The underdrain collection system shall include a 4 to 6 inch pipe wrapped in a 6 to 8 inch gravel layer. The pipe shall have 3/8-inch perforations, spaced at 6-inch centers, with a minimum of 4 holes per row around the circumference of the pipe. The pipe spacing shall be at a maximum of 10 feet on center and a minimum grade of 0.5% must be maintained. A permeable filter fabric shall be required between the gravel layer and the planting soil bed. High density polyethylene (HDPE) pipe is the preferred pipe material, however other suitable pipe materials may be approved.

D. PRETREATMENT / INLETS

- Adequate pretreatment and inlet protection for bioretention systems shall be provided, such as: a grass filter strip below a flow spreader, or a grass channel, or a pea gravel diaphragm.
- For on-line configurations, a grass filter strip with a pea gravel diaphragm or other flow spreader shall be utilized (see Figure 4-28) as the pretreatment measure. The required length of the filter strip depends on the drainage area, imperviousness, and the filter strip slope. Design guidance on filter strips for pretreatment can be found in Chapter 4, Section 4.3.9 of this manual.
- For off-line applications, a grass channel with a pea gravel diaphragm or other flow spreader shall be used for pretreatment. The length of the grass channel depends on the drainage area, land use, and channel slope. The minimum grassed channel length shall be 20 feet. Design guidance on grass channels for pretreatment can be found in Chapter 4, Section 4.3.10 of this manual.

E. OUTLET STRUCTURES

• For bioretention areas placed in soils having a hydrologic soil group designation of C or D, an outlet pipe shall be provided from the underdrain system to the facility discharge. Outlet pipes are optional for group B soils. Discharges shall not exit the outlet pipe in an erosive manner. Due to the slow rate of discharge, outlet erosion protection is generally unnecessary.

F. EMERGENCY SPILLWAY

- An overflow structure and nonerosive overflow channel must be provided to safely pass flows that exceed the storage capacity of the bioretention area to a stabilized downstream area or watercourse. If the system is located off-line, the overflow shall be set above the shallow ponding limit.
- A high flow overflow system <u>within</u> a bioretention structure may consist of a yard drain catchbasin (Figure 4-27), though any number of conventional systems could be used. The throat of the catch basin inlet located in a bioretention facility must be no more than 6 inches above the mulch layer at the elevation of the shallow ponding area.

G. MAINTENANCE ACCESS

- A minimum 20' wide maintenance right-of-way or easement shall be provided from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.
- The maintenance access shall be designed such that all areas of the bioretention area can be easily accessed, and shall be designed to allow vehicles to turn around.

H. SAFETY FEATURES

• Bioretention areas generally do not require any special safety features. Fencing of bioretention facilities is not generally desirable.

I. LANDSCAPING

- Landscaping is critical to the performance and function of bioretention areas.
- A dense and vigorous vegetative cover that is appropriate for use in a bioretention area shall be established over the contributing pervious drainage areas before runoff can be accepted into the facility. When the contributing drainage area is completely or partially disturbed or unstabilized, sediment laden runoff reaching the bioretention can clog the soils and cause the bioretention are to fail.
- In general, vegetation utilized in the bioretention area should be native to East Tennessee, resistant to drought and inundation, tolerant of pollutants, have low fertilization requirements, and be easily maintained. Grasses, shrubs, and trees are all permissible vegetation types for bioretention areas, as long as the species used meet the general guidance provided herein.
- Bioretention areas that will contain trees shall be vegetated as follows:
 - The bioretention area shall be vegetated to resemble a terrestrial forest ecosystem, with a mature tree canopy, subcanopy of understory trees, shrub layer, and herbaceous ground cover. Three species each of both trees and shrubs are recommended to be planted.
 - The tree-to-shrub ratio should be 2:1 to 3:1. On average, the trees should be spaced 8 feet apart. Plants should be placed at regular intervals to replicate a natural forest. Woody vegetation should not be specified at inflow locations.
 - > After the trees and shrubs are established, the ground cover and mulch should be established.

Additional information and guidance on bioretention area design and vegetation can be found on the EPA website at <u>http://cfpub.epa.gov/npdes/stormwater</u> and on the North Carolina State University Biological and Agricultural Engineering website at <u>http://bae.ncsu.edu/stormwater/</u>.

J. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

Physiographic Factors - Local terrain design constraints

- Low Relief Use of bioretention areas may be limited by low head.
- <u>High Relief</u> Ponding area surface must be relatively level.
- <u>Karst</u> Use poly-liner or impermeable membrane to seal bottom.

<u>Soils</u>

• No restrictions, however, planting soil must meet the required design infiltration rate.

Special Downstream Watershed Considerations

<u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of hotspot runoff. May require liner for type "A" and "B" soils; pretreat hotspots; 2 to 4 foot separation distance from water table. Wellhead protection areas may require guidance from other agencies, such as TDEC.

4.3.5.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate the locally regulated peak discharge, in accordance with the guidance presented in Chapter 3.

Step 2. Determine if the development site and conditions are appropriate for the use of a bioretention area

Consider the subsections 4.3.5.4 and 4.3.5.5-A (Location and Siting).

Step 3. Confirm design criteria and applicability

Consider any special site-specific design conditions/criteria from subsection 4.3.5.5-J (Additional Site-Specific Design Criteria and Issues).

Check with the local municipality and other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 4. Compute WQv peak discharge (Q_{wq})

The peak rate of discharge for water quality design storm is needed for sizing of off-line diversion structures (see Chapter 3 for more detail).

- (a) Using WQv (or total volume to be captured), compute CN
- (b) Compute time of concentration using TR-55 method
- (c) Determine appropriate unit peak discharge from time of concentration
- (d) Compute Q_{mg} from unit peak discharge, drainage area, and WQv.

Step 5. Size flow diversion structure, if needed

A flow regulator (or flow splitter diversion structure) should be supplied to divert the WQv to the bioretention area.

Size low flow orifice, weir, or other device to pass Q_{wq}.

Step 6. Determine size of bioretention ponding/filter area

The required planting soil filter bed area is computed using the following equation (based on Darcy's Law):

$$A_{f} = \frac{\left(WQ_{v}\right)\left(d_{f}\right)}{\left[\left(k\right)\left(h_{f} + d_{f}\right)\left(t_{f}\right)\right]}$$

where:

A _f	=	surface area of ponding area (ft ²)
WQv	=	water quality volume (or total volume to be captured)
df	=	filter bed depth
		(4 feet minimum)
k	=	coefficient of permeability of filter media (ft/day)
		(use 0.5 ft/day for silt-loam)
h _f	=	average height of water above filter bed (ft)
		(typically 3 inches, which is half of the 6-inch ponding depth)
t _f	=	design filter bed drain time (days)
		(2.0 days or 48 hours is recommended maximum)

Step 7. Set design elevations and dimensions of facility

See subsection 4.3.5.5-C (Physical Specifications/Geometry).

Step 8. Design conveyances to facility (off-line systems)

See the example figures to determine the type of conveyances needed for the site.

Step 9. Design pretreatment

Pretreat with a grass filter strip (on-line configuration) or grass channel (off-line), and stone diaphragm.

Step 10. Size underdrain system

See subsection 4.3.5.5-C (Physical Specifications/Geometry)

Step 11. Design emergency overflow

An overflow must be provided to bypass and/or convey larger flows to the downstream drainage system or stabilized watercourse. Nonerosive velocities need to be ensured at the outlet point.

Step 12. Design vegetation

A landscaping plan for the bioretention area should be prepared to indicate how it will be established with vegetation.

See subsection 4.3.5.5-I (Landscaping) for more details.

4.3.5.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.5.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of bioretention areas as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This section provides guidance on maintenance activities that are typically required for bioretention areas, along with a suggested frequency for each activity. Individual bioretention areas may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the basin in proper operating condition at all times.

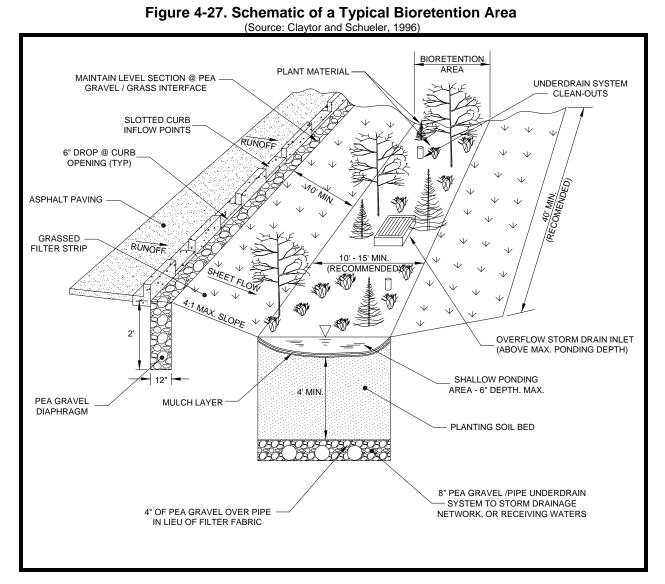
Ins	pection Activities	Suggested Schedule	
•	After several storm events or an extreme storm event, inspect for signs of erosion, signs of mulch movement out of the treatment area, signs of damage to plants or dead or diseased vegetation.	As needed	
٠	Inspect: inflow points for clogging (off-line systems), strip/grass channel for erosion or gullying,		
•	Inspect trees, shrubs and other vegetation to evaluate their health and replace any dead or diseased vegetation.	Semi-annually	
•	Inspect surrounding drainage area for erosion or signs of sediment delivery to the bioretention area.		
٠	Check for signs of vegetation overgrowth.		
•	Inspect treatment area during a rain event and visually verify that stormwater recedes within 24-48 hours from the treatment area.	Annually	
Ма	intenance Activities	Suggested Schedule	
٠	Replace mulch and repair areas of erosion, when identified.	As needed	
٠	Replace dead or diseased plants.		
٠	Remove clogs from the stormwater system inflow and overflow components.		
•	Remove sediments from pretreatment areas and restabilize with stone or vegetation as appropriate.	Semi-annually	
•	Harvest overgrown vegetation and remove from the bioretention area.	As Needed	
•	The planting soils should be tested for pH to establish acidic levels. If the pH is below 5.2, limestone should be applied. If the pH is above 7.0 to 8.0, then iron sulfate plus sulfur can be added to reduce the pH.	Annually	
٠	Check that planting soils still have infiltration rate.		
٠	Replace mulch over the entire area.		
٠	Replace pea gravel diaphragm if warranted.		
•	Note that the surface of the ponding area may become clogged with fine sediment over time. Core aeration or cultivating of un-vegetated areas may be required to ensure adequate filtration.	2 to 3 years	

The local municipality encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of bioretention areas. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the bioretention area. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) BIORETENTION AREA INSPECTION CHECKLIST

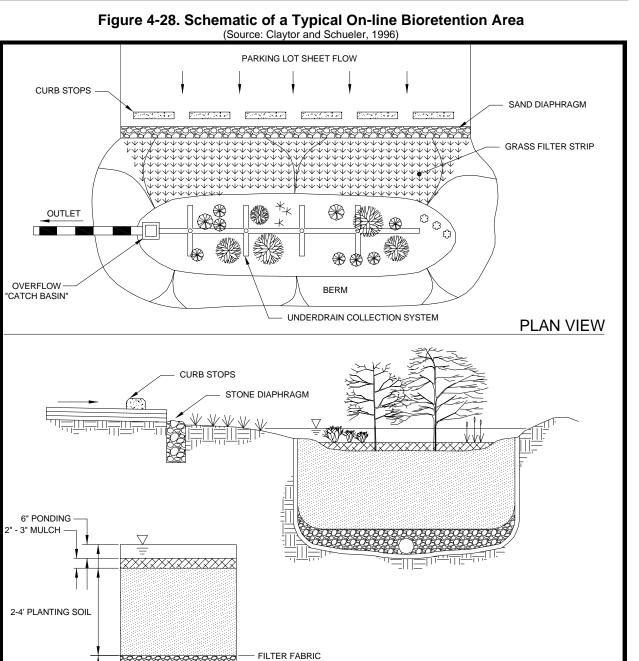
Location:		Owner Change since last inspection? Y N
Owner Name, Address, Phone:		
Date: Time:	Site conditions:	
Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Inflow and Overflow Points		
Clear of debris and functional?		
Sediment accumulation?		
Vegetation in good condition?		
Signs of erosion?		
Other (describe)?		
Sediment Pretreament		
Evidence of sediment accumulation?		
Treatment Area and Vegetation		
Signs of erosion or movement of mulch?		
Vegetation healthy or damaged?		
Signs of sediment?		
Signs of thinning mulch layer?		
Vegetation overgrown and in need of harvesting?		
Standing water for more than 24-48 hours after rain events?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are **UNSATISFACTORY**, list corrective actions and the corresponding completion dates below:


Due Date

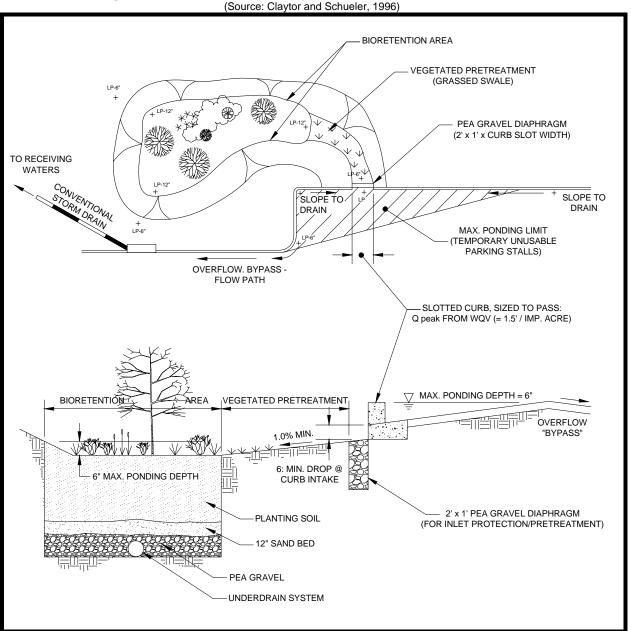
Inspector Signature:__

Inspector Name (printed)____



4.3.5.8 Example Schematics

Northeast Tennessee Water Quality BMP Manual



TYPICAL SECTION

6" PERFORATED PIPE IN 8" GRAVEL JACKET

PROFILE

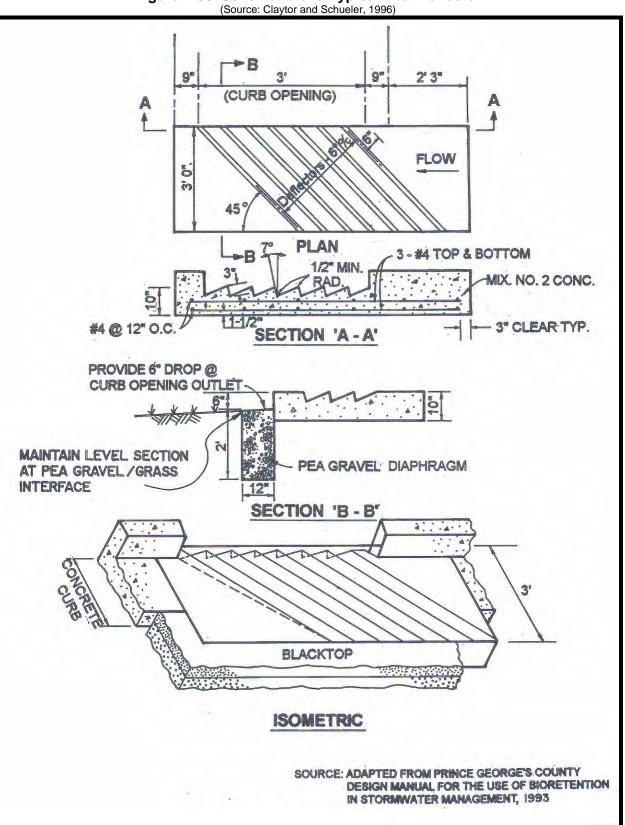


Figure 4-30. Schematic of a Typical Inlet Deflector (Source: Claytor and Schueler, 1996)

4.3.5.9. Design Form

The local municipality recommends the use of the following design procedure forms when designing a bioretention area. Proper use and completion of the form may allow a faster review of the Stormwater Management Plan by the local municipality.

PRELIMINARY HYDROLOGIC CALCULATIONS	
1a. Compute WQv volume requirements Compute Runoff Coefficient, Rv Compute WQv	Rv = WQv =acre-ft
1b. Compute CPv Compute average release rate Compute storage volume required for locally regulated storm events	CPv = acre-ft release rate = cfs storage = acre-ft storage = acre-ft
BIORETENTION AREA DESIGN	
2. Is the use of a bioretention area appropriate?	See subsections 4.3.5.4 and 4.3.5.5 - A
3. Confirm design criteria and applicability.	See subsection 4.3.5.5 - J
4. Determine size of bioretention filter area	$A_{t}=$ ft ²
5. Set design elevations and dimensions	Length =ft Width =ft elevation top of facility other elev: other elev: other elev: other elev:
6. Conveyance to bioretention facility	Online or Offline ?
7. Pretreatment	Туре:
8. Size underdrain area	
Based on guidance: Approx. 10% A _f	Length=ft
9. Overdrain design	Type: Size:
10. Emergency storm weir design	
Overflow weir - Weir equation	Length=ft
11. Choose plants for planting area	Select native plants based on resistance to drought and inundation, cost, aeshetics, maintenance, etc.

Design Procedure Form: Bioretention Areas

4.3.5.10 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual, Volume 2: Technical Handbook. 2001.
- Center for Watershed Protection. *Manual Builder.* Stormwater Manager's Resource Center, Accessed July 2005. *www.stormwatercenter.net*
- City of Portland, OR. Stormwater Management Manual. 2004.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- Prince George's County. Design Manual for Use of Bioretention in Stormwater Management. Department of Environmental Resources, Prince George's County, Landover, MD, 1993.

4.3.5.11 Suggested Reading

- Bell, W. BMP Technologies for Ultra-Urban Settings. In Proceedings of Effective Land Management for Reduced Environmental Impact. Tidewater's Land Management Conference on Water Quality, August 22, 1996.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- US EPA. Storm Water Technology Fact Sheet: Bioretention. EPA 832-F-99-012, Office of Water, 1999.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Washington State Department of Transportation (WSDOT). *Highway Runoff Manual.* Washington State Department of Transportation, 1995.

4.3.6 Surface Sand Filters

General Application Water Quality BMP

Description: Surface sand filters are multi-chamber structures located above ground that are designed to treat stormwater runoff through filtration, using a sediment forebay, a sand bed as its primary filter media and, typically, an underdrain collection system.

DESIGN GUIDELINES:

- Typically requires 2 to 6 feet of head.
- Maximum contributing drainage area of 10 acres for surface sand filter; 2 acres for perimeter sand filter.
- Sand filter media with underdrain system.
- Typically needs to be combined with other controls to provide water quality control.

ADVANTAGES / BENEFITS:

- Applicable to small drainage areas.
- Good for highly impervious areas.
- Good retrofit capability.

DISADVANTAGES / LIMITATIONS:

- High maintenance burden.
- Not recommended for areas with high sediment content in stormwater or clay/silt runoff areas.
- Relatively costly.
- Possible odor problems.
- Cannot be installed until site construction is complete.

MAINTENANCE REQUIREMENTS:

Inspect for clogging – rake first inch of sand. Remove sediment from forebay/chamber. Replace sand filter media as needed.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	*
Detention/Retention:	No

* in certain situations

Accepts hotspot runoff: Yes (requires impermeable liner)

COST CONSIDERATIONS

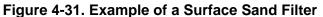
Land Requirement:	Low
Capital Cost:	High
Maintenance Burden:	High

LAND USE APPLICABILITY

Residential/Subdivision Use:	No
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:


80%

4.3.6.1 General Description

Surface sand filters (also referred to as *sand filters* or *filtration basins*) are ground-level, open air structures that capture and temporarily store stormwater runoff and pass it through a filter bed of sand. An example of a surface sand filter is presented in Figure 4-31. Underground sand filters, discussed in Section 4.4.2, treat stormwater in the same manner, but are located below the ground surface. Because of the increased maintenance requirements, underground sand filters are considered Limited Application BMPs.

Most sand filter systems, surface and underground, consist of two-chamber structures. The first chamber is a sediment forebay or sedimentation chamber, which removes floatables and heavy sediments. The second is the filtration chamber, which removes finer sediments and other pollutants by filtering the runoff through a sand bed. The filtered runoff is typically collected and returned to the conveyance system, though it can also partially or fully permeate into the surrounding soil in areas with porous soils.

This system can treat drainage areas up to 10 acres in size and is typically located off-line. Surface sand filters can be designed as an excavation with earthen embankments or as a concrete or block structure. Because they have few site constraints beside head requirements, sand filters can be used on development sites where the use of other structural BMPs may be precluded. However, sand filter systems can be relatively expensive to construct and install, and require a relatively high level of maintenance and inspection. Because of this, surface sand filters are not recommended for use in residential areas.

4.3.6.2 Stormwater Management Suitability

Surface sand filter systems are designed primarily as <u>off-line</u> systems for treatment of the water quality volume and will typically need to be used in conjunction with another structural BMP that can provide downstream channel protection and protection of the locally regulated peak discharge. However, under certain circumstances, filters can provide limited runoff quantity control, particularly for smaller storm events.

Water Quality (WQv)

In sand filter systems, stormwater pollutants are removed through a combination of gravitational settling, filtration and adsorption. The filtration process effectively removes suspended solids and particulates, biochemical oxygen demand (BOD), fecal coliform bacteria, and other pollutants. Surface sand filters with a grass cover have additional opportunities for bacterial decomposition as well as vegetation uptake of pollutants, particularly nutrients.

Channel Protection (CPv)

For smaller sites, a sand filter may be designed to capture the entire channel protection volume (CPv) in either an off- or on-line configuration. Given that a sand filter system is typically designed to completely drain over 40 hours, the channel protection design requirement for extended detention of the 1-year, 24-hour storm runoff volume can be met. For larger sites or where only the WQv is diverted to the sand filter facility, another structural control must be used to provide extended detention of the CPv.

4.3.6.3 Pollutant Removal Capabilities

Surface sand filters are presumed to be able to remove 80% of the total suspended solids (TSS) load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the recommended specifications. Undersized or poorly designed sand filters can reduce TSS removal performance.

The total suspended solids design pollutant removal rate of 80% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for sand filters, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.3.6.4 Application and Site Feasibility Criteria

Surface sand filter systems are well-suited for highly impervious areas where land available for structural BMPs is limited. Sand filters should primarily be considered for new construction or retrofit opportunities for commercial, industrial, and institutional areas where the sediment load is relatively low, such as: parking lots, driveways, loading docks, gas stations, garages, airport runways/taxiways, and storage yards. Sand filters may also be feasible and appropriate in some multi-family residential developments where maintenance is performed by a landscaping (or other suitably capable) company.

To avoid rapid clogging and failure of the filter media, the use of sand filters should be avoided in areas with less than 50% impervious cover, or high sediment yield sites with clay/silt soils.

The following basic criteria should be evaluated to ensure the suitability of a sand filter facility for meeting stormwater management objectives on a site or development.

General Feasibility

- Not suitable for use in a residential subdivision
- Suitable for use in high density/ultra-urban areas
- Not suitable for use as a regional stormwater control. On-site applications are typically most feasible.

Physical Feasibility - Physical Constraints at Project Site

- <u>Drainage Area</u> 10 acres maximum for surface sand filter; 2 acres maximum for perimeter sand filter
- <u>Space Required</u> Function of available head at site
- <u>Minimum Head</u> The surface slope across the filter location should be no greater than 6%. The elevation difference needed at a site from the inflow to the outflow: 5 feet for surface sand filters; 2 to 3 feet for perimeter sand filters.

- <u>Minimum Depth to Water Table</u> If used on a site with an underlying water supply aquifer, a separation distance of 2 feet is required between the bottom of the sand filter and the elevation of the seasonally high water table to prevent groundwater contamination.
- <u>Soils</u> Not recommended for clay/silt drainage areas that are not stabilized. Karst areas may require a liner.

Other Constraints / Considerations

• <u>Aquifer Protection</u> – Do not allow infiltration of filtered hotspot runoff into groundwater

4.3.6.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of sand filters. Sand filters that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. CONSTRUCTION SEQUENCING

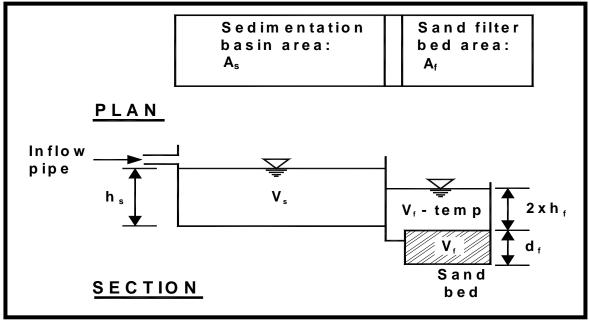
- Ideally, the construction of a sand filter shall take place <u>after</u> the construction site has been stabilized.
- In the event that the sand filter is not constructed after site stabilization, care shall be taken during construction to minimize the risk of premature failure of the sand filter due to deposition of sediments from disturbed, unstabilized areas.
- Diversion berms and erosion prevention and sediment controls shall be maintained around the sand filter during all phases of construction. No runoff or sediment shall enter the sand filter area prior to completion of construction and the complete stabilization of construction areas.
- Sand filters shall not be used as a temporary sediment trap for construction activities.
- During and after excavation of the sand filter, all excavated materials shall be placed downstream, away from the sand filters, to prevent redeposit of the material during runoff events.

B. LOCATION AND SITING

- Surface sand filters shall have a contributing drainage area of 10 acres or less.
- Surface sand filter systems are generally applied to land uses with a high percentage of impervious surfaces. Sand filters shall not be utilized for sites that have less than 50% impervious cover. Pretreatment must be provided as described in part D below, due to the potential for high clay/silt sediment loads that could result in clogging and failure of the filter bed. Any disturbed or denuded areas located within the area draining to and treated by the sand filter shall be stabilized prior to construction and use of the sand filter. The sand filter shall only be constructed after the construction site is stabilized.
- It is preferred that surface sand filters are to be used in an off-line configuration where the water quality volume (WQv) is diverted to the filter facility through the use of a flow diversion structure and flow splitter. Stormwater flows greater than the WQv shall be diverted to other controls or downstream using a diversion structure or flow splitter. In certain situations, as determined by the local municipality, a surface sand filter may be used in an on-line configuration.
- Sand filter systems shall be designed for intermittent flow and must be allowed to drain and re-aerate between rainfall events. They shall not be used on sites with a continuous flow from groundwater, sump pumps, or other sources.

C. GENERAL DESIGN

• A surface sand filter facility shall consist of a two-chamber open-air structure, which is located at ground-level. The first chamber is the sediment forebay (commonly referred to as the sedimentation chamber) while the second chamber houses the sand filter bed. Flow enters the sedimentation chamber where settling of larger sediment particles occurs. Runoff is then discharged from the sedimentation chamber through a perforated standpipe into the filtration chamber. After passing


though the filter bed, runoff is collected by a perforated pipe and gravel underdrain system.

D. PHYSICAL SPECIFICATIONS / GEOMETRY

- The entire treatment system (including the sedimentation chamber) shall be designed to temporarily hold at least 75% of the WQv prior to filtration. Figure 4-32 illustrates the distribution of the treatment volume (0.75 WQv) among the various components of the surface sand filter, including:
 - \succ V_s volume within the sedimentation basin
 - \succ V_f volume within the voids in the filter bed
 - V_{f-temp} temporary volume stored above the filter bed
 - > A_s the surface area of the sedimentation basin
 - \rightarrow A_f surface area of the filter media
 - h_{s} height of water in the sedimentation basin
 - ➢ h_f − average height of water above the filter media
 - \succ d_f depth of filter media

Figure 4-32. Surface Sand Filter Volumes

(Source: Claytor and Schueler, 1996)

- The sedimentation chamber shall be sized to hold at least 25% of the computed WQv and have a length-to-width ratio of at least 2:1. Inlet and outlet structures should be located at opposite ends of the chamber.
- The filter area shall be sized based on the principles of Darcy's Law. A coefficient of permeability (k) of 3.5 ft/day for sand shall be used. The filter bed shall be designed to completely drain in 40 hours or less.
- The filter media shall consist of an 18-inch layer of clean washed medium aggregate concrete sand (ASTM C-33) on top of the underdrain system. Three inches of topsoil shall be placed over the sand bed. Permeable filter fabric shall be placed both above and below the sand bed to prevent clogging of the sand filter and the underdrain system. Figure 4-33 illustrates a typical media cross section.
- The filter bed shall be equipped with a 6-inch perforated pipe underdrain (PVC AASHTO M 252, HDPE, or other suitable pipe material) in a gravel layer. The underdrain shall have a minimum grade of 1/8-inch per foot (1% slope). Holes shall be 3/8-inch diameter and spaced approximately 6 inches

on center. Gravel shall be clean-washed aggregate with a maximum diameter of 3.5 inches and a minimum diameter of 1.5 inches with a void space of about 40%. Aggregate contaminated with soil shall not be used.

• The structure of the surface sand filter may be constructed of impermeable media such as concrete, or through the use of excavations and earthen embankments. When constructed with earthen walls/embankments, filter fabric shall be used to line the bottom and side slopes of the structures before installation of the underdrain system and filter media.

E. PRETREATMENT / INLETS

- Pretreatment of runoff in a sand filter system shall be by a sedimentation chamber, designed in accordance with the criteria stated above.
- Energy dissipators shall be used at the inlets to surface sand filters. Figure 4-34 shows a typical inlet pipe from the sedimentation basin to the filter media basin for the surface sand filter.
- The sand filter shall be designed such that runoff exits the sedimentation chamber at a non-erosive velocity.

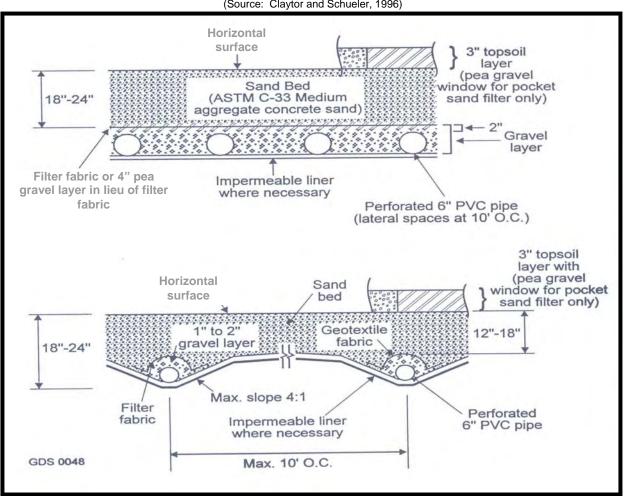
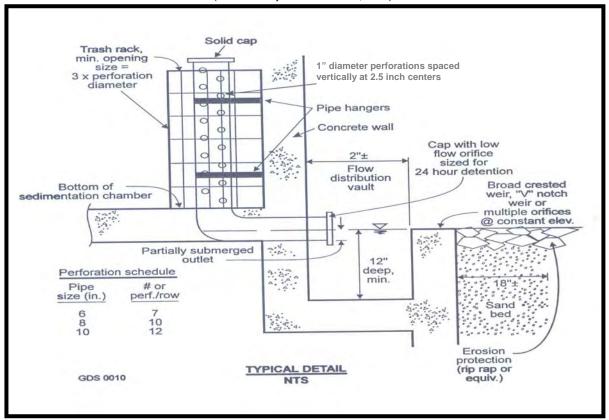


Figure 4-33. Typical Sand Filter Media Cross Sections (Source: Claytor and Schueler, 1996)

F. OUTLET STRUCTURES

• An outlet pipe shall be provided from the underdrain system to the facility discharge. Due to the slow rate of filtration, outlet protection is generally unnecessary (except for emergency overflows and spillways). However, the design shall ensure that the discharges from the underdrain system occur in a non-erosive manner.

G. EMERGENCY SPILLWAY


 An emergency or bypass spillway must be included in the surface sand filter design to safely pass flows that exceed the WQv (and CPv if the filter is utilized for channel protection purposes). The spillway prevents filter water levels from overtopping the embankment and causing structural damage. The emergency spillway shall be located so that embankments, downstream buildings and structures will not be impacted by spillway discharges.

H. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right of way or drainage easement shall be provided for a sand filter from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. Facility designs must enable maintenance personnel to easily remove and replace upper layers of the filter media.

I. SAFETY FEATURES

• Where necessary, surface sand filter facilities can be fenced to prevent access.

J. LANDSCAPING

• Surface sand filters can be designed with a grass cover to aid in pollutant removal and prevent clogging. The grass should be capable of withstanding frequent periods of inundation and drought.

K. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

Physiographic Factors - Local terrain design constraints

- Low Relief Use of surface sand filter may be limited by low head
- <u>High Relief</u> Filter bed surface must be level
- <u>Karst</u> Use liner or impermeable membrane to seal bottom earthen surface of the sand filter or use watertight structure

Special Downstream Watershed Considerations

• <u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of hotspot runoff. May require liner for type "A" and "B" soils; Pretreat hotspots; provide 2 to 4 foot separation distance from water table

4.3.6.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate WQv, CPv, and the locally regulated peak discharge, in accordance with the guidance presented in Chapter 3.

Step 2. Determine if the development site and conditions are appropriate for the use of a surface sand filter.

Consider the Application and Site Feasibility Criteria, and the Additional Site Specific Design Criteria and Issues noted above. Check with the local municipality and other agencies as appropriate to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 3. Compute WQv peak discharge (Qwg)

The peak rate of discharge for water quality design storm is needed for sizing of off-line diversion structures (see Chapter 3 for more information on this calculation).

- (1) Using WQv, compute CN
- (2) Compute time of concentration using TR-55 method
- (3) Determine appropriate unit peak discharge from time of concentration
- (4) Compute Q_{wq} in inches from unit peak discharge, drainage area, and WQv.

Step 4. Size flow diversion structure, if needed

A flow regulator (or flow splitter diversion structure) should be supplied to divert the WQv to the sand filter facility. Size low flow orifice, weir, or other device to pass Q_{wq} .

Step 5. Size filtration basin chamber

The filter area is sized using the following equation (based on Darcy's Law):

$$A_f = (WQv) (d_f) / [(k) (h_f + d_f) (t_f)]$$

where:

 A_f = surface area of filter bed (ft²)

- d_f = filter bed depth (1.5 ft) (at least 18 inches, no more than 24 inches)
- k = coefficient of permeability of filter media (ft/day) (use 3.5 ft/day for sand)
- h_f = average height of water above filter bed (ft)
 - (1/2 h_{max} , which varies based on site but h_{max} is typically \leq 6 feet)
- t_f = design filter bed drain time (days) (1.67 days or 40 hours is maximum time)

Set preliminary dimensions of filtration basin chamber.

Step 6. Size sedimentation chamber

The sedimentation chamber shall be sized to at least 25% of the computed WQv and have a length-to-width ratio of 2:1. The Camp-Hazen equation is used to compute the required surface area:

$$A_s = -(Q_o/w) * Ln (1-E)$$

where:

 A_s = sedimentation basin surface area (ft²)

- Q_o = rate of outflow = the WQv (ft³) / 86400 seconds
- w = particle settling velocity (ft/sec)
- E = trap efficiency

Assuming:

90% sediment trap efficiency (0.9)

- particle settling velocity (ft/sec) = 0.0033 ft/sec for imperviousness $\ge 75\%$
- particle settling velocity (ft/sec) = 0.0004 ft/sec for imperviousness < 75%
- average of 24 hour holding period

Then:

$$A_s = (0.0081) (WQv) ft^2 \text{ for } l \ge 75\%$$

 $A_c = (0.066) (WQv) ft^2 \text{ for } l < 75\%$

Set preliminary dimensions of sedimentation chamber.

Step 7. Compute V_{min}

V_{min} = 0.75 * WQv

Step 8. Compute storage volumes within entire facility and sedimentation chamber orifice size

$$V_{min} = 0.75 WQv = V_s + V_f + V_{f-temp}$$

- (1) Compute V_f = water volume within filter bed/gravel/pipe = $A_f * d_f * n$ Where: n = porosity = 0.4 for most applications
- (2) Compute V_{f-temp} = temporary storage volume above the filter bed = 2 * h_f * A_f
- (3) Compute V_s = volume within sediment chamber = V_{min} V_f V_{f-temp}
- (4) Compute h_s = height in sedimentation chamber = V_s/A_s
- (5) Ensure h_s and h_f fit available head and other dimensions still fit change as necessary in design iterations until all site dimensions fit.
- (6) Size orifice from sediment chamber to filter chamber to release V_s within 24-hours at average release rate with 0.5 h_s as average head.
- (7) Design outlet structure with perforations allowing for a safety factor of 10 times the orifice capacity.
- (8) Size distribution chamber to spread flow over filtration media level spreader weir or orifices.

Step 9. Design inlets, pretreatment facilities, underdrain system, and outlet structures

See design criteria above for more details.

Step 10. Compute overflow weir sizes

- (1) Size overflow weir at elevation hs in sedimentation chamber (above perforated stand pipe) to handle surcharge of flow through filter system from 25-year storm.
- (2) Plan inlet protection for overflow from sedimentation chamber and size overflow weir at elevation hf in filtration chamber (above perforated stand pipe) to handle surcharge of flow through filter system from 25-year storm.

4.3.6.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.6.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of a sand filter as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for sand filters, along with a suggested frequency for each activity. Individual sand filters may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the sand filter in proper operating condition at all times.

nspection Activities	Suggested Schedule	
A record should be kept of the dewatering time (i.e., the time required to drain the filter bed completely after a storm event) for a sand filter to determine if maintenance is necessary. The filter bed should drain completely in about 40 hours after the end of the rainfall.	After Rain Events	
Check to ensure that the filter surface does not clog after storm events.		
Check the contributing drainage area, facility, inlets and outlets for debris.	Manshh	
Check to ensure that the filter surface is not clogging.	Monthly	
Check to see that the filter bed is clean of sediment, and the sediment chamber is not more than 50% full or 6 inches, whichever is less, of sediment. Remove sediment as necessary.		
Make sure that there is no evidence of deterioration, spalling, bulging, or cracking of concrete.		
Inspect grates (perimeter sand filter).	Annually	
Inspect inlets, outlets and overflow spillway to ensure good condition and no evidence of erosion.	Annually	
Check to see if stormwater flow is bypassing the facility.		
Ensure that no noticeable odors are detected outside the facility.		
laintenance Activities		
	Suggested Schedule	
	Suggested Schedule	
Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the sand	Suggested Schedule	
Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the		
 Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter sand filter), ensure that the chamber does not 	Monthly	
 Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter sand filter), ensure that the chamber does not leak, and normal pool level is retained. Check to see that the filter bed is clean of sediment, and the sediment chamber is not more 		
 Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter sand filter), ensure that the chamber does not leak, and normal pool level is retained. Check to see that the filter bed is clean of sediment, and the sediment chamber is not more than 50% full or 6 inches, whichever is less, of sediment. Remove sediment as necessary. 	Monthly	
 Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter sand filter), ensure that the chamber does not leak, and normal pool level is retained. Check to see that the filter bed is clean of sediment, and the sediment chamber is not more than 50% full or 6 inches, whichever is less, of sediment. Remove sediment as necessary. Repair or replace any damaged structural parts. 	Monthly	

The local municipality encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of sand filters. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the sand filter. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) SURFACE SAND FILTER INSPECTION CHECKLIST

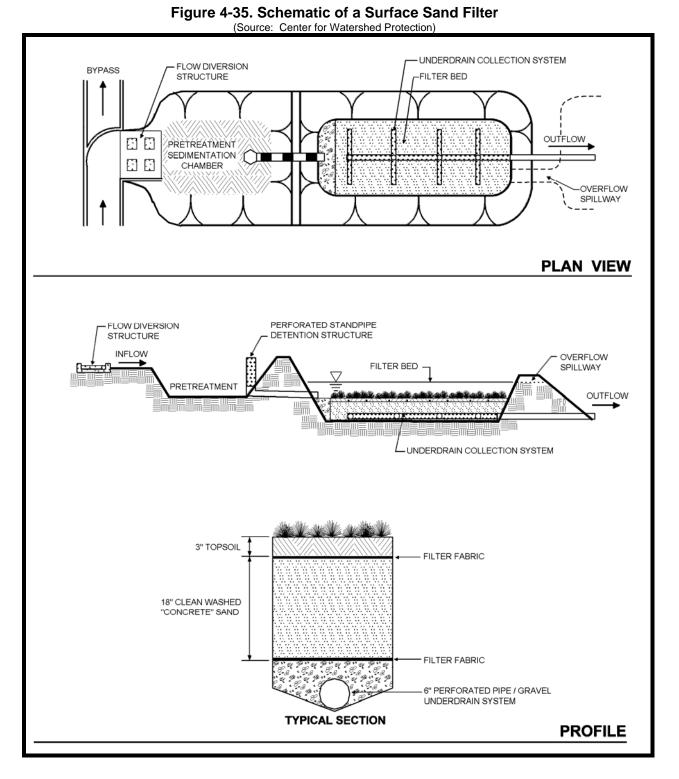
Leader	
Location:	

_____ Owner Change since last inspection? Y N

Owner Name, Address, Phone: _____

Date: _____ Time: _____ Site conditions:_____

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Sand Filter Inspection List		
Complete drainage of the filter in about 40 hours after a rain event?		
Clogging of filter surface?		
Clogging of inlet/outlet structures?		
Clogging of filter fabric?		
Filter clear of debris and functional?		
Leaks or seeps in filter?		
Obstructions of spillway(s)?		
Animal burrows in filter?		
Sediment accumulation in filter bed (less than 50% is acceptable)?		
Cracking, spalling, bulging or deterioration of concrete?		
Erosion in area draining to sand filter?		
Erosion around inlets, filter bed, or outlets?		
Pipes and other structures in good condition?		
Undesirable vegetation growth?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		


If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____ Inspector Name (printed)_____

4.3.6.8 Example Schematic

4.3.6.9 Design Form

The local municipality recommends the use of the following design procedure forms when designing sand filters. Proper use and completion of the form may allow a faster review of the Water Quality Management Plan by the local municipality.

PRELIMINARY HYDROLOGIC CALCULATIONS		
1a. Compute WQv volume requirements		
Compute Runoff Coefficient, Rv	Rv =	
Compute WQv	WQv =	acre-ft
1b. Compute CPv	CPv =	acre-ft
Compute average release rate	release rate =	cfs
Compute storage volume required for locally regulated	storage =	acre-ft
storm events.	storage =	acre-ft
SAND FILTER DESIGN		
2. Is the use of a sand filter appropriate?	Low point in development a	rea =
	Low point at stream inv	vert =
	Total available he	ead =
		n, h _f =
	See subsections 4.3.6.	4 and 4.3.6.5 - A
3. Confirm design criteria and applicability.	See subsection 4.3.6.5	- J
4. Compute WQv peak discharge (Q _{wo})		
Compute Curve Number	CN =	
Compute Time of Concentration, t _c	t _{c =}	hour
Compute Q _{wq}	Q _{wq =}	cfs
5. Size flow diversion structure		
Low flow orifice - orifice equation	A =	ft ²
·	diameter =	in
	length =	
Overflow weir - Weir equation		
6. Size filtration bed chamber		
Compute area from Darcy's Law	A _f =	ft ²
Using length to width (2:1) ratio	L =	ft
	W =	ft
7. Size sedimentation chamber		
Compute area from Camp-Hazen equation	$A_s =$	ft ²
Given W from step 5, compute Length	L =	
8. Compute V _{min}	V _{min} =	ft ³

Design Procedure Forms: Sand Filters

Design Procedure Form: Sand Filters (continued)

Surface Sand Filter			
Volume within filter bed	$V_t =$	ft ³	
Temporary storage above filter bed	V _{f-temp =}	ft3	
Sedimentation chamber (remaining volume)	$V_s =$	ft3	
Height in sedimentation chamber	$h_s =$	ft	
Perforated stand pipe - orfice equation	A =	ft ²	
· · · · · · · · · · · · · · · · · · ·	diameter =	in	
Perimeter Sand Filter			
Compute volume in filter bed	V _f =	ft ³	
Compute wet pool storage	V _w =	ft ³	
Compute temporary storage	V _{f-temp =}	ft ³	
	h _{temp} =	ft	
0. Compute overflow weir sizes			
Compute overflow - Orifice equation	Q =	cfs	
Weir from sedimentation chamber - Weir equation	Length =	ft	
Weir from filtration chamber - Weir equation	Length =	ft	

4.3.6.10 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Center for Watershed Protection. *Manual Builder*. Stormwater Manager's Resource Center, Accessed July 2005. *www.stormwatercenter.net*.
- City of Knoxville. *Knoxville Best Management Practices Manual*. City of Knoxville Stormwater Engineering Division, March 2003.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.

Connecticut Department of Environmental Protection. Stormwater Quality Manual. 2004.

- Minnesota Pollution Control Agency. *Minnesota Stormwater Manual*. Accessed January 2006. <u>http://www.pca.state.mn.us/water/stormwater/stormwater-manual.html</u>
- New Jersey Department of Environmental Protection. Stormwater Best Management Practices Manual. 2004.

StormwaterAuthority.com. Sand and Organic Filters. Accessed January 2006. www.stormwaterauthority.com

4.3.6.11 Suggested Reading

- Bell, W., L. Stokes, L.J. Gavan, and T. Nguyen. Assessment of the Pollutant Removal Efficiencies of Delaware Sand Filter BMPs. City of Alexandria, Department of Transportation and Environmental Services, Alexandria, VA, 1995.
- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks, 1993.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Horner, R.R., and C.R. Horner. Design, Construction, and Evaluation of a Sand Filter Stormwater Treatment System. Part II: Performance Monitoring. Report to Alaska Marine Lines, Seattle, WA, 1995.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.
- Northern Virginia Regional Commission (NVRC). *The Northern Virginia BMP Handbook.* Annandale, VA, 1992.
- Schueler, T.R. Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques 1(2):47-54, 1994.
- US EPA. Storm Water Technology Fact Sheet: Sand Filters. EPA 832-F-99-007. Office of Water. 1999.
- Young, G.K., S. Stein, P. Cole, T. Kammer, F. Graziano, and F. Bank. *Evaluation and Management of Highway Runoff Water Quality.* FHWA-PD-96-032. Federal Highway Administration, Office of Environment and Planning, 1996.

4.3.7 Infiltration Trench

General Application Water Quality BMP

Description: An infiltration trench is an excavated trench filled with stone aggregate used to capture and allow infiltration of stormwater runoff into the surrounding soils from the bottom and sides of the trench.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Soil infiltration rate of 0.5 in/hr or greater required.
- Excavated trench (3 to 8 foot depth) filled with stone media (1.5- to 2.5-inch diameter); pea gravel and sand filter layers.
- A sediment forebay and grass channel, or equivalent upstream pretreatment, must be provided.
- Observation well to monitor percolation.
- Size of drainage area.
- Maximum contributing drainage area of 5 acres.
- Must not be placed under pavement or concrete.

ADVANTAGES / BENEFITS:

- Provides for groundwater recharge.
- Good for small sites with porous soils.

DISADVANTAGES / LIMITATIONS:

- Potential for groundwater contamination.
- High clogging potential; should not be used on sites with fine-particle soils (clays or silts) in drainage area.
- Significant setback requirements.
- Restrictions in karst areas.
- Geotechnical testing required; two borings per facility.

MAINTENANCE REQUIREMENTS:

- Inspect for clogging.
- Remove sediment from forebay.
- Replace pea gravel layer as needed.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	*
Detention/Retention:	No

* in certain situations

Accepts hotspot runoff: No

COST CONSIDERATIONS

Land Requirement:	Med
Capital Cost:	High
Maintenance Burden:	High

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:


90%

4.3.7.1 General Description

Infiltration trenches are excavations typically filled with stone to create an underground reservoir for stormwater runoff (see Figure 4-36). This runoff volume gradually infiltrates through the bottom and sides of the trench into the subsoil over a 2-day period and eventually reaches the water table. By diverting runoff into the soil, an infiltration trench not only treats the water quality volume, but also helps to preserve the natural water balance on a site and can recharge groundwater and preserve baseflow. Due to this fact, infiltration systems are limited to areas with highly porous soils where the water table and/or bedrock are located well below the bottom of the trench. In addition, infiltration trenches must be carefully sited to avoid the potential of groundwater contamination.

Infiltration trenches are not intended to trap sediment and must always be designed with a sediment forebay and grass channel or filter strip, or other appropriate pretreatment measures to prevent clogging and failure. Due to their high potential for failure, these facilities must only be considered for sites where upstream sediment control can be ensured.

4.3.7.2 Stormwater Management Suitability

Infiltration trenches are designed primarily for stormwater quality. However, they can provide limited runoff quantity control, particularly for smaller storm events. For some smaller sites, trenches can be designed to capture and infiltrate the channel protection volume (CPv) in addition to the water quality volume (WQv). An infiltration trench will need to be used in conjunction with another structural BMP to provide flood protection from locally regulated peak discharges, if required.

Water Quality (WQv)

Using the natural filtering properties of soil, infiltration trenches can remove a wide variety of pollutants from stormwater through sorption, percolation, filtering, and bacterial and chemical degradation. Sediment load and other suspended solids are removed from runoff by pretreatment measures in the facility that treats flows before they reach the trench surface.

Channel Protection (CPv)

For smaller sites, an infiltration trench may be designed to capture and infiltrate the entire CPv in either an off or on-line configuration. For larger sites, or where only the WQv is diverted to the trench, another structural BMP must be used to provide CPv extended detention.

4.3.7.3 Pollutant Removal Capabilities

An infiltration trench is presumed to be able to remove 90% of the total suspended solids load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the recommended specifications. The TSS removal performance is reduced for undersized, poorly designed, or unmaintained infiltration trenches.

The total suspended solids design pollutant removal rate of 90% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for infiltration trenches, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.3.7.4 Application and Site Feasibility Criteria

Infiltration trenches are generally suited for medium-to-high density residential and commercial developments where the subsoil is sufficiently permeable to provide a reasonable infiltration rate and the water table is low enough to prevent groundwater contamination. They are applicable primarily for impervious areas where there are not high levels of fine particulates (clay/silt soils) in the runoff and should only be considered for sites where the sediment load is relatively low.

Infiltration trenches can either be used to capture sheet flow from a drainage area or function as an offline device. Due to the relatively narrow shape, infiltration trenches can be adapted to many different types of sites and can be utilized in retrofit situations. Unlike some other structural stormwater BMPs, they can easily fit into the margin, perimeter, or other unused areas of developed sites.

To protect groundwater from potential contamination, infiltration trenches cannot be utilized to treat runoff from hotspot land uses or activities, as identified by the local municipality. For example, infiltration trenches should not be used for manufacturing and industrial sites, where there is a potential for high concentrations of soluble pollutants and heavy metals, or for areas that may have a high pesticide concentration. Infiltration trenches are also not suitable in areas with karst geology without adequate geotechnical testing by qualified individuals.

The following criteria should be evaluated to ensure the suitability of an infiltration trench for meeting stormwater management objectives on a site or development.

General Feasibility

- Suitable for use in a residential subdivision
- Suitable for use in high density/ultra-urban areas
- Not suitable for use as a regional (i.e., off-site or treating more than one site) stormwater control

Physical Feasibility - Physical Constraints at Project Site

- <u>Drainage Area</u> 5 acres maximum
- <u>Space Required</u> Will vary depending on the depth of the facility
- <u>Site Slope</u> No more than 6% slope (for pre-construction facility footprint) across the location of the infiltration trench
- <u>Minimum Head</u> Elevation difference needed from the inflow of the infiltration trench to the outflow: 1 foot
- <u>Minimum Depth to Water Table</u> 4 feet recommended between the bottom of the infiltration trench and the elevation of the seasonally high water table
- Soils Infiltration rate greater than 0.5 inches per hour required (typically hydrologic group "A", some

group "B" soils)

Other Constraints/Considerations

• <u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of hotspot runoff. May require liner for type "A" and "B" soils; pretreat hotspots; provide 2 to 4 foot separation distance from water table.

4.3.7.5 Planning and Design Standards

The following standards are to be considered **minimum** standards for the design of an infiltration trench facility. Consult with the local municipality to determine if there are any variations to these criteria or additional standards that must be followed.

A. CONSTRUCTION SEQUENCING

- Ideally, the construction of an infiltration trench shall take place **after** the construction site has been stabilized.
- In the event that the infiltration trench is not constructed after stabilization, care shall be taken during construction to minimize the risk of premature failing of the infiltrations trench due to deposition of sediments from disturbed, unstabilized areas.
- Diversion berms and erosion prevention and sediment controls shall be maintained around an infiltration trench during all phases of construction. No runoff or sediment shall enter the infiltration trench area prior to completion of construction and the complete stabilization of construction areas.
- Infiltration trenches shall not be used as a temporary sediment trap for construction activities.
- During and after excavation of the infiltration trench, all excavated materials shall be placed downstream, away from the trench, to prevent redeposit of the material during runoff events.

B. LOCATION AND SITING

- To be suitable for infiltration, underlying soils should have an infiltration rate (f_c) of <u>0.5 inches per hour</u> <u>or greater</u>, as initially determined from NRCS soil textural classification, and subsequently confirmed by field geotechnical tests. The minimum geotechnical testing is one test hole per 5,000 square feet, with a minimum of two borings per facility (taken within the proposed limits of the facility). Infiltration trenches cannot be used in fill soils.
- Heavy equipment shall not be utilized in the area where the infiltration trench will be located. Soil compaction will adversely affect the performance of the trench. Infiltration trench sites should be roped-off and flagged during construction.
- During excavation and trench construction, only light equipment such as backhoes or wheel and ladder type trenchers should be used to minimize compaction of surrounding soils.
- Infiltration trenches should have a contributing drainage area of 5 acres or less.
- Soils on the drainage area tributary to an infiltration trench should have a clay content of less than 20% and a silt/clay content of less than 40% to prevent clogging and failure.
- There should be at least 4 feet between the bottom of the infiltration trench and the elevation of the seasonally high water table.
- Clay lenses, bedrock or other restrictive layers below the bottom of the trench will reduce infiltration rates unless excavated.

Minimum setback requirements for infiltration trench facilities (when not specified by the local municipality):

- From a building foundation 25 feet
- ➢ From a private well − 100 feet

- ▶ From a public water supply well 1,200 feet
- From a septic system tank/leach field 100 feet
- ➢ From surface waters − 100 feet
- ➢ From surface drinking water sources − 400 feet (100 feet for a tributary)
- When used in an off-line configuration, the water quality volume (WQv) is diverted to the infiltration trench through the use of a flow splitter. Stormwater flows greater than the WQv are diverted to other controls or downstream using a diversion structure or flow splitter.
- To reduce the potential for costly maintenance and/or system reconstruction, it is strongly recommended that the trench be located in an open or lawn area, with the top of the structure as close to the ground surface as possible. Infiltration trenches shall not be located beneath paved surfaces, such as parking lots.
- Infiltration trenches are designed for intermittent flow and must be allowed to drain and allow reaeration of the surrounding soil between rainfall events. They must not be used on sites with a continuous flow from groundwater, sump pumps, or other sources.

C. GENERAL DESIGN

- A well-designed infiltration trench consists of:
 - (1) Excavated shallow trench backfilled with sand, coarse stone, and pea gravel, and lined with a filter fabric;
 - (2) Appropriate pretreatment measures; and
 - (3) One or more observation wells to show how quickly the trench dewaters or to determine if the device is clogged.

Figure 4-37 provides a plan view and profile schematic for the design of an off-line infiltration trench facility. An example of an observation well is shown in Figure 4-38.

D. PHYSICAL SPECIFICATIONS / GEOMETRY

- The required trench storage volume is equal to the water quality volume (WQv). For smaller sites, an infiltration trench can be designed with a larger storage volume to include the channel protection volume (CPv).
- A trench must be designed to fully dewater the entire WQv within 24 to 48 hours after a rainfall event. The slowest infiltration rate obtained from tests performed at the site should be used in the design calculations.
- Trench depths should be between 3 and 8 feet, to provide for easier maintenance. The width of a trench must be less than 25 feet.
- Broad, shallow trenches reduce the risk of clogging by spreading the flow over a larger area for infiltration.
- The surface area required is calculated based on the trench depth, soil infiltration rate, aggregate void space, and fill time (assume a fill time of 2 hours for most designs).
- The bottom slope of a trench should be flat across its length and width to evenly distribute flows, encourage uniform infiltration through the bottom, and reduce the risk of clogging.
- The stone aggregate used in the trench should be washed, bank-run gravel, 1.5 to 2.5 inches in diameter with a void space of about 40%. Aggregate contaminated with soil shall not be used. A porosity value (void space/total volume) of 0.32 should be used in calculations, unless aggregate specific data exist.
- A 6-inch layer of clean, washed sand is placed on the bottom of the trench to encourage drainage and prevent compaction of the native soil while the stone aggregate is added.

- The infiltration trench is lined on the sides and top by an appropriate geotextile filter fabric that prevents soil piping but has greater permeability than the parent soil. The top layer of filter fabric is located 2 to 6 inches from the top of the trench and serves to prevent sediment from passing into the stone aggregate. Since this top layer serves as a sediment barrier, it will need to be replaced more frequently and must be readily separated from the side sections.
- The top surface of the infiltration trench above the filter fabric is typically covered with pea gravel. The pea gravel layer improves sediment filtering and maximizes the pollutant removal in the top of the trench. In addition, it can easily be removed and replaced should the device begin to clog. Alternatively, the trench can be covered with permeable topsoil and planted with grass in a landscaped area.
- An observation well must be installed in every infiltration trench and should consist of a perforated PVC pipe, 4 to 6 inches in diameter, extending to the bottom of the trench. The observation well will show the rate of dewatering after a storm, as well as provide a means of determining sediment levels at the bottom and when the filter fabric at the top is clogged and maintenance is needed. It should be installed along the centerline of the structure, flush with the ground elevation of the trench. A visible floating marker should be provided to indicate the water level. The top of the well should be capped and locked to discourage vandalism and tampering.
- The trench excavation should be limited to the width and depth specified in the design. Excavated material should be placed away from the open trench so as not to jeopardize the stability of the trench sidewalls. The bottom of the excavated trench shall not be loaded in a way that causes soil compaction, and should be scarified prior to placement of sand. The sides of the trench shall be trimmed of all large roots. The sidewalls shall be uniform with no voids and scarified prior to backfilling. All infiltration trench facilities should be protected during site construction and should be constructed after upstream areas have been stabilized.
- Smearing of the soil at its interface with the trench bottom or sides must be avoided or corrected. Smearing can be corrected by raking or roto-tilling.

E. PRETREATMENT / INLETS

- Pretreatment facilities **must always** be used in conjunction with an infiltration trench to prevent clogging and failure.
- For a trench receiving sheet flow from an adjacent drainage area, the pretreatment system should consist of a vegetated filter strip with a minimum 25-foot length. A vegetated buffer strip around the entire trench is required if the facility is receiving runoff from both directions. If the infiltration rate for the underlying soils is greater than 2 inches per hour, 50% of the WQv should be pretreated by another method prior to reaching the infiltration trench.
- For an off-line configuration, pretreatment should consist of a sediment forebay, vault, plunge pool, or similar sedimentation chamber (with energy dissipaters) sized to 25% of the water quality volume (WQv). Exit velocities from the pretreatment chamber must be non-erosive for the 2-year design storm.

F. OUTLET STRUCTURES

• Outlet structures are not required for infiltration trenches.

G. EMERGENCY SPILLWAY

• Typically for off-line designs, there is no need for an emergency spillway. However, a non-erosive overflow channel should be provided to safely pass flows that exceed the storage capacity of the trench to a stabilized downstream area or watercourse.

H. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right-of-way or drainage easement shall be provide for an infiltration trench, from a driveway, public or private road. The maintenance access easement shall

have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. Adequate access must be provided to the grates to the filter bed for perimeter sand filter design. Facility designs must enable maintenance personnel to easily remove and replace upper layers of the infiltration media.

I. SAFETY FEATURES

• In general, infiltration trenches are not likely to pose a physical threat to the public and do not need to be fenced.

J. LANDSCAPING

• Vegetated filter strips and buffers should fit into and blend with surrounding area. Native grasses are preferable, if compatible. The trench may be covered with permeable topsoil and planted with grass in a landscaped area

K. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

There are a number of additional site specific design criteria and issues (listed below) that must be considered in the design of an infiltration trench.

Physiographic Factors - Local terrain design constraints

- <u>High Relief</u> Maximum site slope of 6%
- <u>Karst</u> Not suitable without adequate geotechnical testing

Special Downstream Watershed Considerations

• <u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of hotspot runoff. May require liner for type "A" and "B" soils; Pretreat hotspots; provide 2 to 4 foot separation distance from water table.

4.3.7.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate WQv, CPv, and the locally regulated peak discharge, in accordance with the guidance presented in Chapter 3.

<u>Step 2.</u> Determine if the development site and conditions are appropriate for the use of an infiltration trench.

Consider the subsections 4.3.7.4 and 4.3.7.5-B (Location and Siting).

Step 3. Confirm design criteria and applicability

Consider any special site-specific design conditions/criteria from subsection 4.3.7.5-K (Additional Site-Specific Design Criteria and Issues).

Check with the local municipality and other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 4. Compute WQv peak discharge (Qwg)

The peak rate of discharge for water quality design storm is needed for sizing of off-line diversion (see Chapter 3 for more information).

Step 5. Size flow diversion structure, if needed

A flow regulator (or flow splitter diversion structure) should be supplied to divert the WQv to the

infiltration trench.

Size low flow orifice, weir, or other device to pass Q_{wq}.

Step 6. Size infiltration trench

The area of the trench can be determined from the following equation:

$$A = \frac{WQv}{(nd + kT/12)}$$

where:

A = Surface Area
WQv = Water Quality Volume (or total volume to be infiltrated)
n = porosity
d = trench depth (feet)
k = percolation (inches/hour)
T = Fill Time (time for the practice to fill with water), in hours

A porosity value n = 0.32 should be used.

All infiltration systems should be designed to fully dewater the entire WQv within 24 to 48 hours after the rainfall event.

A fill time T=2 hours can be used for most designs. See subsection 4.3.7.5-D (Physical Specifications/Geometry) for more specifications.

Step 7. Determine pretreatment volume and design pretreatment measures

Size pretreatment facility to treat 25% of the water quality volume (WQv) for off-line configurations. See subsection 4.3.7.5-E (Pretreatment / Inlets) for more details.

Step 8. Design spillway(s)

Adequate stormwater outfalls should be provided for the overflow exceeding the capacity of the trench, ensuring non-erosive velocities on the down-slope.

4.3.7.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.7.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of an infiltration trench as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for infiltration trenches, along with a suggested frequency for each activity. Individual trenches may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the infiltration trench in proper operating condition at all times.

Ins	pection Activities	Suggested Schedule
•	A record should be kept of the dewatering time (i.e., the time required to drain the infiltration trench completely after a storm event) of the trench to determine if maintenance is necessary. The trench should drain completely in about 24 hours after the end of the rainfall. Ponded water inside the trench (as visible from the observation well or on the surface) longer than 24 hours or several days after a storm event is an indication that the trench is clogged.	After Rain Events
•	Check that the area draining to the trench, the trench and its inlets are clear of debris. Check the area draining to the trench for evidence of erosion.	Monthly
•	Check observation wells following 3 days of dry weather. Failure to percolate within this time period indicates clogging. Inspect pretreatment devices and diversion structures for sediment build-up and structural damage.	Semi-annual Inspection
Mai	ntenance Activities	Suggested Schedule
Mai •	ntenance Activities Remove sediment and oil/grease from pretreatment devices, as well as overflow structures.	Suggested Schedule Monthly
Mai •		
Mai • •	Remove sediment and oil/grease from pretreatment devices, as well as overflow structures.	
Mai • •	Remove sediment and oil/grease from pretreatment devices, as well as overflow structures. Mow grass filter strips as necessary. Remove grass clippings.	Monthly
Mai • •	Remove sediment and oil/grease from pretreatment devices, as well as overflow structures. Mow grass filter strips as necessary. Remove grass clippings. Remove trees that start to grow in the vicinity of the trench. Replace pea gravel/topsoil and top surface filter fabric (when clogged). Removed sediment	Monthly Semi-annual Inspection
Mai • • •	Remove sediment and oil/grease from pretreatment devices, as well as overflow structures. Mow grass filter strips as necessary. Remove grass clippings. Remove trees that start to grow in the vicinity of the trench. Replace pea gravel/topsoil and top surface filter fabric (when clogged). Removed sediment and media may usually be disposed of in a landfill.	Monthly Semi-annual Inspection

The local municipality encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of an infiltration trench. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the trench. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) INFILTRATION TRENCH INSPECTION CHECKLIST

Location:	
Location.	

_____ Owner Change since last inspection? Y N

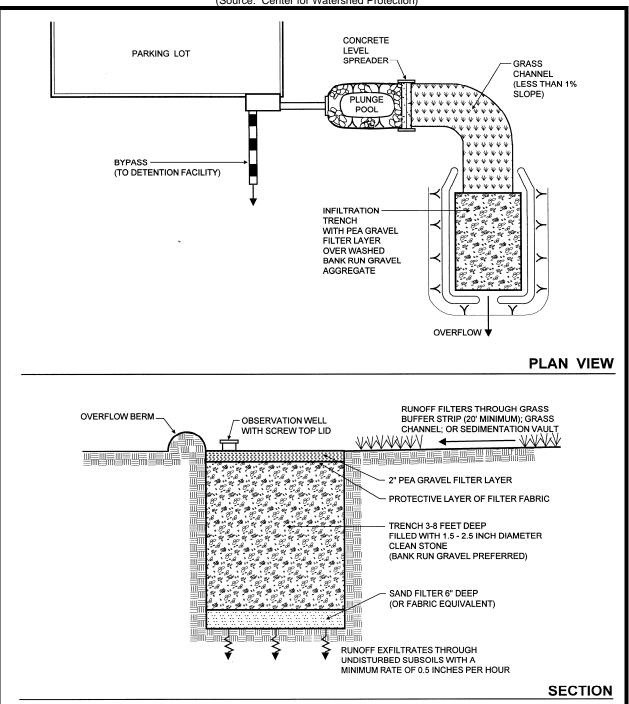
Owner Name, Address, Phone: _____

Date: _____ Time: _____ Site conditions: _____

_ Site conditions:___

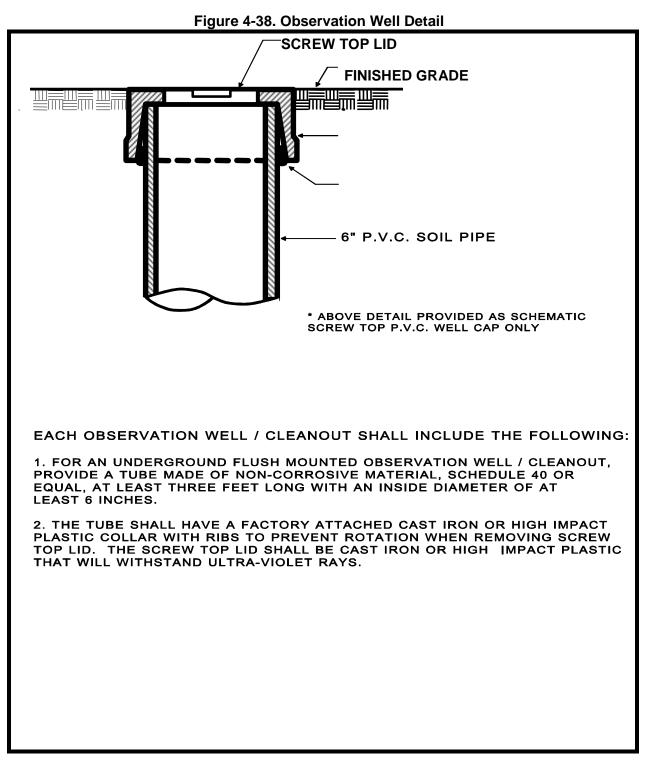
Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Inspection List		
Complete drainage of the filter in about 24 to 48 hours after a rain event?		
Clogging of trench surface?		
Clogging of inlet/outlet structures?		
Standing water in observation well when no water should be present?		
Trench clear of debris and functional?		
Evidence of leaks or seeps?		
Animal burrows in trench?		
Cracking, spalling, bulging or deterioration of concrete?		
Erosion in area draining to trench?		
Erosion around inlets, trench, or outlets?		
Pipes and other structures in good condition?		
Undesirable vegetation growth?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:


Corrective Action Needed	Due Date

Inspector Signature:____

Inspector Name (printed)



4.3.7.8 Example Schematics

Figure 4-37. Schematic of an Infiltration Trench (Source: Center for Watershed Protection)

4.3.7.9 Design Form

The local municipality recommends the use of the following design procedure forms when designing infiltration trenches. Proper use and completion of the form may allow a faster review of the Water Quality Management Plan by the local municipality.

PRELIMINARY HYDROLOGIC CALCULATIONS		
1a. Compute WQv volume requirements	-	
Compute Runoff Coefficient, R _v Compute WQv	Rv = WQv =	acre-ft
•		
1b. Compute CPv		acre-ft cfs
Compute average release rate Compute storage volume required for locally regulated	release rate = storage =	acre-ft
storm events	storage =	acre-ft
INFILTRATION TRENCH DESIGN		
2. Is the use of an infiltration trench appropriate?	See subsections 4.3.7.	4 and 4.3.7.5 - B
3. Confirm local design criteria and applicability.	See subsection 4.3.7.5	- K
4. Compute WQv peak discharge (Q _{wq})		
Compute Curve Number	CN =	
Compute Time of Concentration t_c	t _c =	hour
Compute Q _{wq}	Q _{wq} =	cfs
5. Size infiltration trench	Area =	ft ²
Width must be less than 25 ft	Width =	ft
	Length =	ft
6. Size the flow diversion structures		
Low flow orifice from orifice equation		• 2
$Q = CA(2gh)^{0.5}$	A =	ft ²
C varies with orifice condition	diam. =	inch
Overflow weir from weir equation $Q = CLH^{3/2}$	Length =	ft
7. Pretreatment volume (for offine designs)		
$Vol_{pre} = 0.25(WQv)$	Vol _{pre} =	ft ³
8. Design spillway(s)	- pie	
0. Dosign spinway(s)	l	

Design Procedure Form: Infiltration Trench

4.3.7.10 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Center for Watershed Protection. *Manual Builder.* Stormwater Manager's Resource Center, Accessed July 2005. <u>www.stormwatercenter.net</u>.
- Federal Highway Administration (FHWA). Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring. United States Department of Transportation, Accessed January 2006. <u>http://www.fhwa.dot.gov/environment/ultraurb/index.htm</u>

4.3.7.11 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management*. Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- US EPA. Storm Water Technology Fact Sheet: Storm Water Wetlands. EPA 832-F-99-025. Office of Water, 1999.
- Faulkner, S. and C. Richardson. Physical and Chemical Characteristics of Freshwater Wetland Soils. Constructed Wetlands for Wastewater Treatment, ed. D. Hammer, Lewis Publishers, 831 pp, 1991.
- Guntenspergen, G.R., F. Stearns, and J. A. Kadlec. *Wetland Vegetation.* Constructed Wetlands for Wastewater Treatment, ed. D. A. Hammer, Lewis Publishers, 1991.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.

4.3.8 Enhanced Swales

General Application Water Quality BMP

Description: Enhanced swales are vegetated open channels that are explicitly designed and constructed to capture and treat stormwater runoff within dry or wet cells formed by check dams or other means.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum contributing drainage area of 5 acres.
- Longitudinal slopes must be less than 4%.
- Bottom width of 2 to 8 feet.
- Side slopes 2:1 or flatter; 4:1 recommended.
- Convey the 25-year storm event with a minimum of 6 inches of freeboard.
- No soil restrictions.
- Dry swales require a permeable soil layer.
- Wet swales require wetland plants.

ADVANTAGES / BENEFITS:

- Combines stormwater treatment with runoff conveyance system.
- Less expensive than curb and gutter.
- Reduces runoff velocity and the potential for channel/ditch erosion.

DISADVANTAGES / LIMITATIONS:

- Higher maintenance than curb and gutter.
- Cannot be used on steep slopes.
- Possible resuspension of sediment.
- Potential for odor / mosquitoes (wet swale).

MAINTENANCE REQUIREMENTS:

- Maintain grass heights of approximately 4 to 6 inches (dry swale).
- Occasional sediment removal from forebay and channel.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	*
Detention/Retention:	No

* in certain situations

Accepts hotspot runoff: Yes (requires impermeable liner)

COST CONSIDERATIONS

Land Requirement:	High
Capital Cost:	Med
Maintenance Burden:	Low

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	No
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:

75-90%

4.3.8.1 General Description

Enhanced swales (also referred to as *vegetated open channels* or *water quality swales*) are conveyance channels engineered to capture and treat the water quality volume (WQv) for a drainage area. They differ from a normal drainage channel or conventional swale because they incorporate specific features that enhance stormwater pollutant removal effectiveness.

Enhanced swales are designed with limited longitudinal slopes to force the stormwater flow to be slow and shallow, thus allowing for particulates to settle and limiting the effects of erosion. Berms and/or check dams installed perpendicular to the flow path promote settling and infiltration.

There are two primary enhanced swale designs, the *dry swale* and the *wet swale* (or *wetland channel*). Below are descriptions of these two designs:

- **Dry Swale** The dry swale is a vegetated conveyance channel designed to include a filter bed of prepared soil that overlays an underdrain system. Dry swales are sized to allow the entire WQv to be filtered or infiltrated through the bottom of the swale. Because they are dry most of the time, they are often the preferred option in residential settings.
- Wet Swale (Wetland Channel) The wet swale is a vegetated channel designed to retain water or marshy conditions that support wetland vegetation. A high water table or poorly drained soils are necessary to retain water. The wet swale essentially acts as a linear shallow wetland treatment system, where the WQv is retained.

Figure 4-39. Enhanced Swale Examples

Enhanced Dry Swale

Enhanced Wet Swale

Enhanced swales must not to be confused with a *filter strip* or *grass channel*, because they afford a much higher level of water quality treatment than the latter BMPs. Ordinary *grass channels* are not engineered to provide the same treatment capability as a well-designed dry swale with filter media. *Filter strips* are designed to accommodate overland flow rather than channelized flow and can be used as stormwater credits to help reduce the total water quality treatment volume for a site. Both of these practices may be used for pretreatment or included in a "treatment train" approach where redundant treatment is provided. Please see a further discussion of these structural controls in subsections 4.3.9 and 4.3.10, respectively.

4.3.8.2 Stormwater Management Suitability

Enhanced swale systems are designed primarily for stormwater quality and have only a limited ability to provide channel protection or flood protection.

Water Quality (WQv) and Channel Protection (CPv)

Dry swale systems rely primarily on filtration through an engineered media to provide removal of stormwater contaminants. Wet swales achieve pollutant removal both from sediment accumulation and biological removal. Generally only the WQv is treated by a dry or wet swale, and another structural BMP

must be used to provide extended detention of the CPv. However, for some smaller sites, a swale may be designed to capture and detain the full CPv.

4.3.8.3 Pollutant Removal Capabilities

The dry enhanced swale is presumed to be able to remove 90% of the TSS load in typical urban postdevelopment runoff when sized, designed, constructed and maintained in accordance with the recommended specifications. The TSS removal value for wet swales is 75%. Undersized or poorly designed swales can reduce TSS removal performance.

The following design pollutant removal rates are conservative average pollutant reduction percentages for design purposes derived from sampling data, modeling and professional judgment. In a situation where a removal rate is not deemed sufficient, additional controls may be put in place at the given site in a series or "treatment train" approach.

• Total Suspended Solids – Dry Swale 90% / Wet Swale 75%

For additional information and data on pollutant removal capabilities for enhanced dry and wet swales, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.3.8.4 Application and Feasibility Criteria

Enhanced swales can be used in a variety of development types; however, they are primarily applicable to residential and commercial areas of low to moderate density where the impervious cover in the contributing drainage area is relatively small, and along roads and highways. Dry swales are mainly used in moderate to large lot residential developments, small impervious areas (parking lots and rooftops), and along rural highways. Wet swales tend to be used for highway runoff applications, small parking areas, and in commercial developments as part of a landscaped area.

Because of their relatively large land requirement, enhanced swales are generally not used in higher density areas. In addition, wet swales may not be desirable for some residential applications, due to the presence of standing and stagnant water, which may create nuisance odor or mosquito problems.

The topography and soils of a site will determine the applicability of one of the two enhanced swale designs. Overall, the topography should allow for the design of a swale with sufficient slope and cross-sectional area to maintain non-erosive velocities. The following criteria should be evaluated to ensure the suitability of a stormwater basin for meeting stormwater management objectives on a site or development.

General Feasibility

- Suitable for use in residential subdivisions and in non-residential areas.
- Not generally suitable for high density/ultra-urban areas, as land requirements may preclude their use.
- Not suitable for use as a regional stormwater control.

Physical Feasibility - Physical Constraints at Project Site

- <u>Drainage Area</u> 5 acres maximum
- <u>Space Required</u> Approximately 10 to 20% of the tributary impervious area
- <u>Channel Slope</u> Channel slope shall not exceed 4%
- <u>Minimum Head</u> Elevation difference needed at a site from the inflow to the outflow: 3 to 5 feet for dry swale; 1 foot for wet swale

- <u>Minimum Depth to Water Table</u> 2 feet required between the bottom of a dry swale and the elevation
 of the seasonally high water table, if an aquifer or treating a stormwater discharging from a hotspot
 land use; wet swale is below water table or placed in poorly drained soils
- <u>Soils</u> Engineered media for dry swale

Other Constraints / Considerations

• <u>Aquifer Protection</u> – Exfiltration from the enhanced swale should be prevented in enhanced swales that serve hotspot land uses.

4.3.8.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of an enhanced swale. Enhanced swales that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- A dry or wet swale shall be located on a property such that the topography allows for the design of a channel with sufficiently mild slope, as discussed in part C below (unless small drop structures are used), and sufficient cross-sectional area to maintain non-erosive velocities. Site designers shall also take into account the location and use of other site features, such as buffers and undisturbed natural areas when determining the location of an enhanced swale, and should attempt to aesthetically "fit" the facility into the landscape.
- Enhanced swale systems shall have a contributing drainage area of 5 acres or less.
- A wet swale shall only be used where the water table is at or near the soil surface, or where there is a sufficient water balance in poorly drained soils to support a wetland plant community.

B. GENERAL DESIGN

• Enhanced swales that are located "on-line" shall also be designed to safely pass larger flows in accordance with the local municipality's design criteria for open channels (Chapter 2). Flow enters the channel through a pretreatment forebay. Runoff can also enter along the sides of the channel as sheet flow through the use of a pea gravel flow spreader trench located along the top of the bank of the swale.

Dry Swale

 A dry swale system shall consist of an open conveyance channel with a filter bed of permeable soils that overlay an underdrain system. Flow passes into and is detained in the main portion of the channel where it is filtered through the soil bed. Runoff is collected and conveyed by a perforated pipe and gravel underdrain system to the outlet. Figure 4-40 presented at the end of this section provides a plan view and profile schematic for the design of a dry swale system.

Wet Swale

• A wet swale or wetland channel shall consist of an open conveyance channel which has been excavated to the water table or to poorly drained soils. Check dams are used to create multiple wetland "cells," which act as miniature shallow marshes. Figure 4-41 presented at the end of this section provides a plan view and profile schematic for the design of a wet swale system.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

General

• The enhanced swale shall have a minimum slope of 1%, and the slope shall not exceed 4%. A 1% to 2% slope is considered ideal. Where topography necessitates a slope steeper than 2%, 6 to 12-inch drop structures must be designed and constructed to limit the energy slope to within the

recommended 1 to 2% range. Energy dissipation is required below the drops. The drops shall be spaced a minimum of 50 feet apart.

- The maximum WQv ponding depth in the enhanced swale shall not exceed 18 inches at the end point of the swale. An average depth of 12-inches shall be maintained.
- Enhanced swales shall have a bottom width ranging from 2 to 8 feet to ensure adequate filtration. Wider channels will be permitted, but must contain berms, walls, or a compound cross-section to prevent channel braiding or uncontrolled sub-channel formation.
- Enhanced swales shall have a trapezoidal or compound cross-section. Side slopes shall not exceed 2:1. The local municipality may approve side slopes up to 4:1 where side inflows by sheet flow will not be substantial, and where such swales can be easily maintained. Side slopes greater than 2:1 in residential areas are strongly discouraged.
- Enhanced swales shall be designed such that the peak velocity for the 2-year storm must be conveyed in a non-erosive manner, given the soil and vegetative cover provided.
- If the enhanced swale is on-line, the swale shall be sized to convey runoff for the locally regulated peak discharge.

Dry Swale

- Dry swale channels shall be sized to store and infiltrate the entire water quality volume (WQv) with less than 18 inches of ponding and allow for full filtering through the permeable soil layer. Ponding shall occur for no longer than 48 hours, though a 24-hour ponding time is more desirable.
- The bed of a dry swale shall consist of a permeable soil layer of at least 30 inches in depth, above a 4-inch diameter perforated longitudinal underdrain (PVC AASHTO M 252, HDPE or other suitable underdrain pipe material) in a 6-inch gravel layer. The soil media shall have an infiltration rate of at least 1 foot per day (1.5 feet per day maximum) and contain a high level of organic material to facilitate pollutant removal. A permeable filter fabric shall be placed between the gravel layer and the overlying soil.
- Excavation of the dry swale and its associated underdrain shall be limited to the width and depth specified in the design. The bottom of the excavated trench shall not be loaded in a way that causes soil compaction, and shall be scarified prior to placement of gravel and permeable soil. The sides of the channel shall be trimmed of all large roots. The sidewalls shall be uniform with no voids and scarified prior to backfilling.

Wet Swale

- Wet swale channels are sized to retain the entire water quality volume (WQv) with less than 18 inches of ponding at the maximum depth point.
- Check dams can be used to achieve multiple wetland cells. V-notch weirs in the check dams can be utilized to direct low flow volumes.

D. PRETREATMENT / INLETS

- Inlets to enhanced swales shall include energy dissipators, such as riprap.
- Pretreatment of runoff in both a dry and wet swale system shall be provided by a sediment forebay located at the inlet. The pretreatment volume shall be equal to 0.1 inches per impervious acre (363 ft³). This storage can be obtained by providing check dams at pipe inlets and/or driveway crossings.
- Enhanced swale systems that receive direct concentrated runoff (as opposed to shallow concentrated or overland flow) shall have a 6-inch drop to a pea gravel diaphragm flow spreader at the upstream end of the control.
- A pea gravel diaphragm and gentle side slopes shall be provided along the top of channels to provide pretreatment for lateral sheet inflows.

E. OUTLET STRUCTURES

Dry Swale

• The underdrain system shall discharge to the storm drainage infrastructure or a stable outfall in a non-erosive manner.

Wet Swale

• Outlet protection shall be used at any discharge point from a wet swale to prevent scour and downstream erosion.

F. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right-of-way or drainage easement shall be provided for the length of the enhanced swale from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. The right-of-way shall be located such that maintenance vehicles and equipment can access the entire enhanced swale.

G. LANDSCAPING

 The water quality management plan shall specify the landscape design of the enhanced swale, and shall include appropriate grass species and/or wetland plants based on specific site, soils and hydric conditions present along the swale. Vegetation shall be limited to grasses and non-woody wetland plants. Trees and other large woody plant species are not appropriate for use in an enhanced swale and are prohibited.

Dry Swale

• Turf grasses that require minimal maintenance shall be used in dry swales. Native grasses are preferred, but not required. Maintenance of the turf grasses shall be performed as appropriate to maintain a stable and viable coverage of the swale bottom and side slopes.

Wet Swale

- At the time of construction, emergent vegetation shall be planted in the swale, or wetland soils may be spread on the swale bottom for seed stock. More information on wetland plants can be found at the following websites:
 - http://wetlands.fws.gov/
 - http://www.npwrc.usgs.gov/resource/plants/floraso/species.htm
- Where wet swales do not intercept the groundwater table, a water balance calculation shall be performed to ensure an adequate water budget to support the specified wetland species. See Chapter 3 of the Northeast Tennessee Stormwater Planning Group Regional Water Quality BMP Manual for guidance on water balance calculations.

H. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

There are a number of additional site specific design criteria and issues (listed below) that must be considered in the design of an enhanced swale.

Physiographic Factors - Local terrain design constraints

- Low Relief Reduced need for use of check dams
- <u>High Relief</u> Not feasible if slopes are greater than 4%
- <u>Karst</u> No exfiltration of runoff from dry swales located in hotspot land uses; an impermeable liner shall be utilized for swales that control stormwater discharges from hotspot land uses.

Special Downstream Watershed Considerations

• <u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of runoff from land uses that have a high pollution potential. May require liner for type "A" and "B" soils; Pretreat runoff from polluted areas and hotspot land uses; 2 to 4 foot separation distance from water table

4.3.8.6 Design Procedures

Step 1. Compute appropriate runoff control volumes and peak discharges

Calculate WQv, CPv, and the locally regulated peak discharge, in accordance with the guidance presented in Chapter 3.

Step 2. Determine if the development site and conditions are appropriate for the use of an enhanced swale system (dry or wet swale).

Consider the subsections 4.3.8.4 and 4.3.8.5-A (Location and Siting). Check with the local municipality and other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 3. Determine pretreatment volume

The sediment forebay should be sized to contain 0.1 inches per impervious acre (363 ft^3) of contributing drainage. The forebay storage volume counts toward the total WQv requirement, and should be subtracted from the WQv for subsequent calculations.

Step 4. Determine swale dimensions and compute number of check dams (or similar structures) required to detain WQv as per the above stated design criteria.

Size bottom width, depth, length, and slope necessary to store WQv with less than 18 inches of ponding at the downstream end.

- Slope cannot exceed 4% (1 to 2% recommended)
- Bottom width should range from 2 to 8 feet
- Ensure that side slopes are no greater than 2:1

Step 5. Calculate draw-down time

Dry swale: Planting soil should pass a maximum rate of 1.5 feet in 24 hours and must completely filter WQv within 48 hours.

Wet swale: Must hold the WQv.

Step 6. Check 2-year and 25-year velocity erosion potential and freeboard

Check for erosive velocities and modify design as appropriate. Provide 6 inches of freeboard for the 25-year event.

Step 7. Design low flow orifice at downstream headwalls and check dams

Design orifice to pass WQv in six hours.

Step 8. Design inlets, sediment forebay(s), and underdrain system (dry swale)

See design criteria above for further details.

Step 9. Prepare Vegetation and Landscaping Plan

A landscaping plan for a dry or wet swale shall be submitted with the stormwater management plan that indicates the vegetation proposed for the swale, and how the enhanced swale system will be stabilized and established with vegetation.

4.3.8.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.8.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of enhanced swales as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for enhanced swales, along with a suggested frequency for each activity. Individual enhanced swales may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the swale in proper operating condition at all times.

Ins	pection Activities	Suggested Schedule		
•	Inspect after seeding and after first major storm for any damage to vegetation, side slopes and bottom.	Post construction		
•	Inspect for signs of erosion, unhealthy or damaged vegetation, denuded areas, channelization of flow, debris and litter, and areas of sediment accumulation. Perform inspections at the beginning and end of the wet season. Additional inspections after periods of heavy rainfall are desirable.	Semi-annually		
•	Inspect level spreader for clogging (if applicable), grass along side slopes for erosion and formation of rills or gullies, and sand/soil bed for erosion problems. Inspect pea gravel diaphragm for clogging.			
•	Inspect sediment forebays and/or pretreatment areas for debris and sediment accumulation.			
Ма	intenance Activities	Suggested Schedule		
•	Mow grass to maintain a height of 3–4 inches, for safety, aesthetic, or other purposes, if needed. Litter should always be removed prior to mowing. Grass clippings, if captured, should not be dumped in the swale.			
•	Irrigate swale during dry season (April through October) or when necessary to maintain the vegetation.	As needed (frequent, seasonally)		
•	Repair damaged areas (e.g., erosion rills or gullies) and re-establish vegetation where needed. Remove invasive species manually. The use of fertilizers, herbicides and pesticides should occur only when absolutely necessary, and then in minimal amounts.			
٠	Remove litter, branches, rocks blockages, and other debris and dispose of properly.			
•	Clear accumulated debris and sediment from the inlet flow spreader (if applicable) and pea gravel diaphragm.	el Semi-annually		
٠	Inspect pea gravel diaphragm for clogging and correct the problem.	Annually		
•	Plant an alternative grass species if the original grass cover has not been successfully established. Reseed and apply mulch to damaged areas.	(if needed)		
•	Remove all accumulated sediment that may obstruct flow through the swale. Sediment accumulating near culverts and in channels should be removed when it builds up to 3 in. at any spot, or covers vegetation, or once it has accumulated to 10% of the original design volume. Replace the grass areas damaged in the process.			
•	Remove all accumulated sediment in the sediment forebay and pretreatment areas.	As needed		
•	Repair areas of erosion around swale and underdrain outlets. Reestablish soil stabilization measures (e.g., rip-rap stone, turf grasses) as needed.	(infrequent)		
•	Roto-till or cultivate the surface of the sand/soil bed of dry swales if the swale does not draw down within 48 hours. Re-establish swale vegetation after roto-till activities.			

The local municipality encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of enhanced swales. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the enhanced swale.

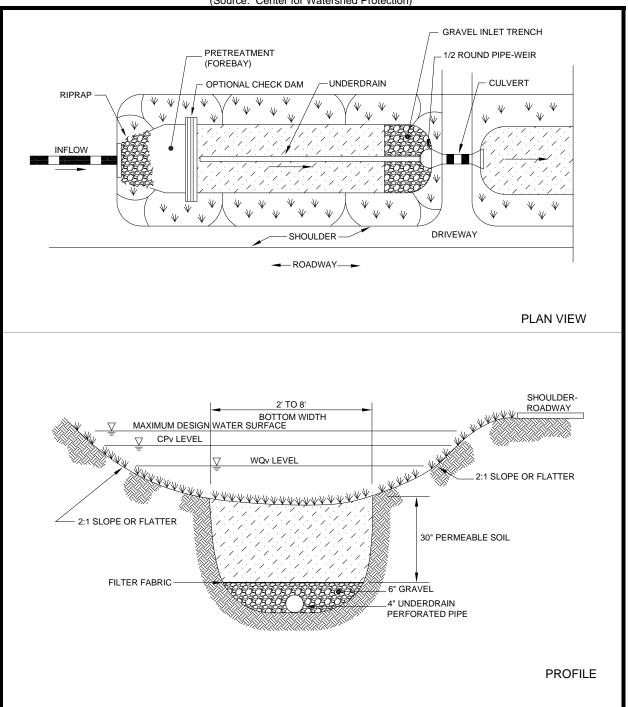
INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) ENHANCED SWALE INSPECTION CHECKLIST

Location:			
-			

Owner Change since last inspection? Y N

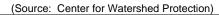
Owner Na	me, Address, Phone:		
Date:	Time:	Site conditions:	
	Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Enhance	ed Swale		
Healthy	vegetation?		
Erosion of	on bottom or side slopes?		
Animal b	urrows in swale?		
Clear of	debris and functional?		
Check da	ams in place (if applicable)?		
Evidence	e of sediment accumulation?		
Unintenti	onal obstructions or blockages	?	
Clogged	pea gravel diaphragm?		
Undesira	ble vegetation growth?		
Visible p	ollution?		
Other (de	escribe)?		
	tlet Channels		
Clear of	debris and functional?		
	t accumulation?		
Signs of			
Other (de	,		
	nt Forebays or Pretreatment A	Areas	
Evidence	of sediment accumulation?		
Hazards			
Have the	re been complaints from reside	ents?	

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:


Corrective Action Needed	Due Date	

Inspector Signature:

Public hazards noted?


4.3.8.8 Example Schematics

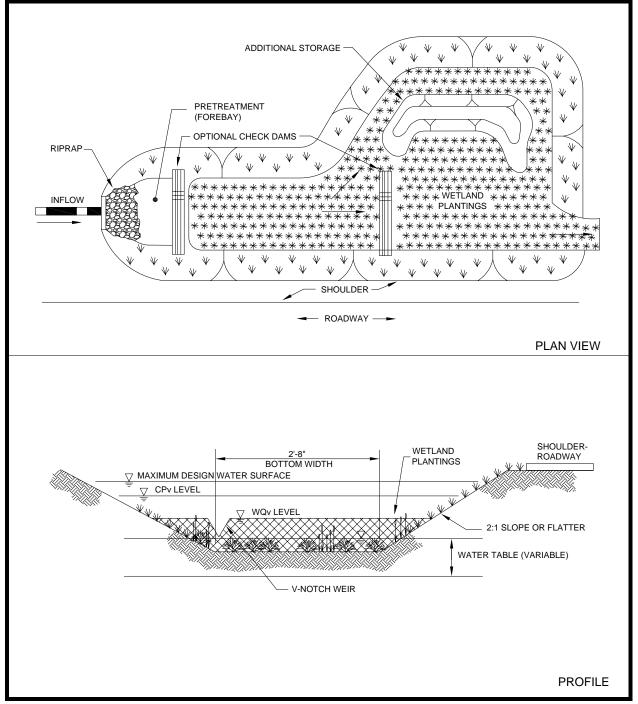


Figure 4-40. Schematic of a Dry Swale (Source: Center for Watershed Protection)

4.3.8.9 Design Form

The local municipality recommends the use of the following design procedure forms when designing enhanced swales. Proper use and completion of the form may allow a faster review of the Water quality Management Plan by the local municipality.

PRELIMINARY HYDROLOGIC CALCULATIONS		
 Compute WQv volume requirements Compute Runoff Coefficient, Rv Compute WQv 	Rv = WQv =	acre-ft
1b. Compute CPv Compute average release rate Compute storage volume required for locally regulated storm events	CPv = release rate = storm = storm =	cfs acre-ft
ENHANCED SWALE DESIGN		
2. Is the use of an enhanced swale appropriate?	See subsections 4.3.8	8.4 and 4.3.8.5 - A
Confirm design criteria and applicability.	See subsection 4.3.8.	5 - J
3. Pretreatment Volume (Forebay) V _{pre} =(I)(.1")(1'/12")	V _{pre} =	acre-ft
 Determine swale dimensions Assume trapezoidal channel with max depth of 18 inches 	Length –	ft
	Length = Width = Side Slopes = Area =	ft
Compute number of check dams (or similar structures)		
required to detain WQv	Slope = Depth = Distance = Number =	ftft
 Calculate draw-down time Require k = 1.5 ft per day for dry swales 	t =	hr
 Check 25-year velocity erosion potential and freeboard Requires separate computer analysis for velocity 	V _{min} =	fps
Overflow wier (use weir equation) Use weir equation for slot length ($Q = CLH^{3/2}$)	Weir Length =	ft
7 Design low flow orifice at headwall Area of orifice from orifice equation $Q = CA(2gh)^{0.5}$ C varies with orifice condition	Area = diameter	ft ² inches
8 Design inlets, sediment forebays, outlet structures, maintenance access, and safety features.	See subsection 4.3.8.	5 - D through H
9. Design landscaping plan (including wetland vegetation) Notes:		

Design Procedure Form: Enhanced Swales

4.3.8.10 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Center for Watershed Protection. *Manual Builder*. Stormwater Manager's Resource Center, Accessed July 2005. *www.stormwatercenter.net*
- Connecticut Department of Environmental Protection. Stormwater Quality Manual. 2004.
- Federal Highway Administration (FHWA), United States Department of Transportation. *Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring.* Accessed January 2006. <u>http://www.fhwa.dot.gov/environment/ultraurb/index.htm</u>
- Natural Resources Conservation Service (NRCS), United States Department of Agriculture, <u>www.soils.gov</u>

4.3.8.11 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual. Environmental and Conservation Services, 1998.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.

This page left intentionally blank

4.3.9 Filter Strip

General Application Water Quality BMP

Description: Filter strips are uniformly graded and densely vegetated sections of land engineered and designed to treat runoff and remove pollutants through vegetative filtering and infiltration.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Drainage area size based on flow length and slope.
- Must have slopes between 2% and 6%.
- Must maintain sheet flow across the entire filter strip.
- Minimum 15 ft flow length; the longer the flow length, the higher the pollutant removal, if sheet flow is maintained.

ADVANTAGES / BENEFITS:

- High community acceptance in any type of setting.
- Easy to maintain once ground cover and/or trees are established.
- Can be used as pre-treatment for other BMPs, with an effect similar to a sediment forebay.
- Filter strips are easily incorporated into new construction/development designs.

DISADVANTAGES / LIMITATIONS:

- Cannot meet the 80% TSS goal without another BMP in a treatment train. A 50' filter strip is assumed to achieve a 50% TSS removal. A 25 ft strip is assumed to achieve a 10% TSS removal.
- Filter strips and level spreaders have limited drainage areas.
- It can be difficult to construct a level lip on level spreaders.

MAINTENANCE REQUIREMENTS:

- Maintain a dense, healthy stand of grass and other vegetation.
- Repair areas of erosion and re-vegetate as needed.
- Remove sediment build-up.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: Yes, with pretreatment

COST CONSIDERATIONS

Land Requirement:	Med - High
Capital Cost:	Low
Maintenance Burden:	Low

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

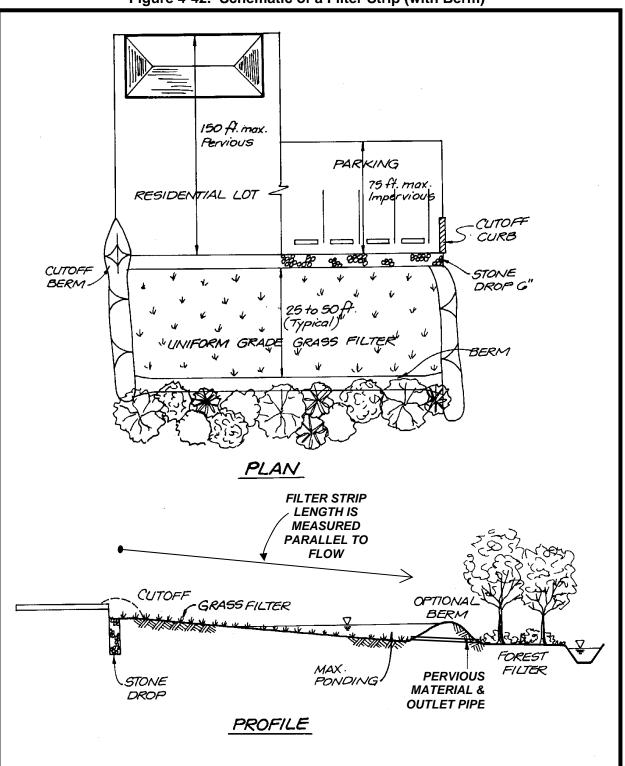
Total Supponded Solida:	10 to
Total Suspended Solids:	50%

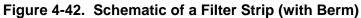
4.3.9.1 General Description

Filter strips are uniformly graded and densely vegetated sections of land, engineered and designed to treat runoff and remove pollutants through vegetative filtering and infiltration. Because they cannot accept channelized runoff, filter strips are best suited to treating runoff from roads and highways, roof downspouts, very small parking lots, and pervious surfaces. They are also ideal for use as pre-treatment measures for a stream buffer or structural stormwater controls such as enhanced swales or basins. Filter strips can serve as a buffer between incompatible land uses, can be landscaped to be aesthetically pleasing, and can provide groundwater recharge in areas with pervious soils.

Pollutant removal from filter strips is highly variable and depends primarily on density of vegetation and contact time for filtration and infiltration. These, in turn, depend on soil and vegetation type, slope, and presence of sheet flow. Pollutant removal efficiencies are based upon a 50-foot long strip. Filter strips with shorter flow lengths are considered to have lower removal efficiencies and should be used as coarse sediment settling areas for other structural controls. Filter strips are often considered to be an integral component of those controls, similar to sediment forebays for stormwater basins or other structural BMPs. Uniform sheet flow must be maintained through the filter strip to provide pollutant reduction and avoid erosion. To obtain sheet flow when discharging runoff from a developed area, a level spreader may be required.

There are two different filter strip designs: a simple filter strip and a design that includes a permeable berm at the bottom. The presence of the berm increases the contact time between the filter strip and the runoff, thus reducing the overall width of the filter strip required to treat stormwater runoff. An example schematic of a filter strip is presented in Figure 4-42.


4.3.9.2 Stormwater Management Suitability


Filter strips are designed primarily for stormwater quality and do not have the ability to provide channel protection or flood protection.

Water Quality (WQv)

To treat stormwater runoff, filter strips rely on the use of vegetation to slow runoff velocities and filter out sediment and other pollutants from urban stormwater. There can also be a significant reduction in runoff volume for smaller flows that infiltrate through pervious soils within the filter strip. To be effective, however, sheet flow must be maintained across the entire filter strip. Once runoff flow concentrates, it effectively short-circuits the filter strip and reduces any water quality benefits. Therefore, a flow spreader must normally be included in the filter strip design.

City of Kingsport Stormwater Management Manual

4.3.9.3 Pollutant Removal Capabilities

The following design pollutant removal rates are conservative average pollutant reduction percentages for design purposes derived from sampling data, modeling and professional judgment. Research indicates that the pollutant removal ability of a filter strip is highly dependent upon the minimum flow path length, as follows.

Filter Strips that have a minimum flow path length of 50 feet or greater:

• Total Suspended Solids – 50%

Filter Strips that have a minimum flow path length between 25 feet and 50 feet (pretreatment control for coarse sediments):

• Total Suspended Solids – 10%

Filter strips that have a flow path length less than 25 feet are assigned a 0% TSS removal value.

4.3.9.4 Application and Feasibility Criteria

Filter strips can be used in a variety of development types. However, because of their relatively large land requirement, filter strips are generally not determined to be useful in higher density areas. The topography and proposed site layout will determine the applicability of filter strips.

General Feasibility

- Suitable for use in residential subdivisions and in non-residential areas.
- Can be used in high density/ultra-urban areas, but land requirements may preclude their use.
- Not suitable for use as a regional stormwater control.

4.3.9.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of a filter strip. Filter strips that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- Filter strips are most appropriate for treating the stormwater runoff from small drainage areas. Flow must enter the filter strip as sheet flow spread out over the length (long dimension normal to flow) of the strip. The design depth of flow shall be no greater than 2 inches. As a rule, flow starts to channelize within a maximum of 75 feet for impervious surfaces, and 150 feet for pervious surfaces (CWP, 1996). For longer flow paths, special provision must be made to ensure design flows spread evenly across the filter strip.
- A level spreader may be needed to achieve sheet flow, the design of which should be factored into the location and siting of the filter strip and into the overall site layout. Level spreader design is presented in Chapter 3 of this manual.
- Filter strips should be integrated into site designs.
- Filter strips should be constructed outside the natural stream buffer area whenever possible to maintain a more natural buffer along the streambank.
- Filter strips shall not be in areas or on soils that cannot sustain a dense vegetative cover with high retardance.
- Pedestrian traffic across the filter strip should be limited through channeling onto sidewalks.

B. PHYSICAL SPECIFICATIONS / GEOMETRY

- Filter strips shall be designed having a slope between 2% and 6%. Greater slopes than this will encourage the formation of concentrated flow. Flatter slopes will encourage standing water. Both the top and toe of the slope shall be as flat as possible to encourage sheet flow and prevent erosion.
- The filter strip shall have a minimum length (flow path) of 25 feet long to provide filtration and contact time for water quality treatment. At least fifty (50) feet is necessary to achieve the 50% TSS removal value.
- Flow must enter the filter strip as sheet flow, designed to spread out over the width of the strip with a depth of 1 to 2 inches.
- The design of the filter strip and the area draining to the filter strip shall be such that stormwater flows in excess of the design flow can discharge across or around the strip without causing erosion or other damage. Often a bypass channel or overflow spillway with a protected channel section is designed to handle higher flows.
- An effective flow spreader is to use a pea gravel diaphragm at the top of the slope (ASTM D 448 size no. 6, 1/8" to 3/8"). The pea gravel diaphragm (a small trench running along the top of the filter strip) serves two purposes. First, it acts as a pre-treatment device, settling out sediment particles before they reach the practice. Second, it acts as a level spreader, maintaining sheet flow as runoff flows over the filter strip. Other types of flow spreaders include a concrete sill, curb stops, or curb and gutter with "sawteeth" cut into it. Level spreader design can be found in Chapter 3 of this manual.
- Maximum discharge loading per foot of filter strip width (perpendicular to flow path) shall be determined using the Manning equation:

Equation 4.3.9.1
$$q = \frac{0.00236}{n} Y^{\frac{3}{3}} S^{\frac{1}{2}}$$

where: q = discharge per foot of width of filter strip (cfs/ft)

- Y = allowable depth of flow (inches) = 2 inches maximum
- S = slope of filter strip (percent)
- n = Manning's "n" roughness coefficient (use 0.15 for medium grass, 0.25 for dense grass, and 0.35 for very dense Bermuda-type grass)
- Using *q* computed above, the minimum width of a filter strip shall be calculated using the following equation:

Equation 4.3.9.2

$$W_{fMIN} = rac{Q_{wq}}{q}$$

where: W_{fMIN} = minimum filter strip width perpendicular to flow (feet)

- Q = peak discharge of stormwater runoff (cfs)
- q = discharge per foot of width of filter strip (cfs/ft)

Filter Strips without a permeable berm:

• The length of the filter strip (parallel to flow path across the filter strip) shall be sized to achieve a contact time between the stormwater runoff and filter strip vegetation of no less than five (5) minutes. The equation for filter strip length (the flow path) is based on the SCS TR-55 travel time equation (SCS, 1986):

Equation 4.3.9.3

$$L_f = \frac{(T_t)^{1.25} (P_{2-24})^{0.625} (S)^{0.5}}{3.34n}$$

where: L_f = length of filter strip parallel to flow path (ft)

- T_t = travel time through filter strip (minutes), minimum 5 minutes
- P₂₋₂₄ = 2-year, 24-hour rainfall depth (inches)
- S = slope of filter strip (percent)
- n = Manning's "n" roughness coefficient (use 0.15 for medium grass, 0.25 for dense grass, and 0.35 for very dense Bermuda-type grass)

Filter Strips with a permeable berm:

- The filter strip shall be sized to contain the entire WQv within the wedge of water that backs up behind the berm.
- The maximum height of the berm is 12 inches.
- Outlet pipes from the berm shall be sized to ensure that the runoff stored behind the berm drains within 24 hours.
- The outlet pipes shall be designed such that runoff discharges from the berm in a non-erosive manner.
- The berm shall be constructed of a mixture of sand, gravel and sandy loam to encourage grass cover. Specifications for sand and gravel are: sand - ASTM C-33 fine aggregate concrete sand 0.02"-0.04"; gravel - AASHTO M-43 ½" to 1".

Filter Strips used for pre-treatment:

• A number of other structural controls, including bioretention areas and infiltration trenches, may utilize a filter strip as a pre-treatment measure. The required length of the filter strip depends on the drainage area, imperviousness, and the filter strip slope. Table 4-9 provides sizing guidance for using filter strips for pre-treatment.

Parameter	Parameter Impervious Areas ¹ Perviou		ervious Areas (Lawns, etc) ²					
Maximum inflow approach length (feet)	3	5	7	5	7	5	1(00
Filter strip slope (max = 6%)	≤ 2%	> 2%	≤ 2%	> 2%	≤ 2%	> 2%	≤ 2%	> 2%
Filter strip minimum length (feet) ³	10	15	20	25	10	12	15	18

Table 4-9. Sizing of Filter Strips for Pre-treatment

1 – 75 feet maximum impervious area flow length to filter strip.

2 – 150 feet maximum pervious area flow length to filter strip.

3 - At least 25 feet is required for minimum pre-treatment credit of 10% TSS removal. Fifty feet is required for 50% removal.

C. SPECIAL CONSIDERATIONS FOR THE AS-BUILT CERTIFICATION

- Like any other water quality BMP, the filter strip must be shown on the as-built certification specifically as a water quality BMP. The following components must be addressed in the as-built certification:
 - 1. Ensure the design flows are spread evenly across the filter strip.
 - 2. Ensure the design slope is between 2% and 6%.
 - 3. The dimensions of the filter strip must be verified.
 - 4. The type of vegetation used in the filter strip.

D. MAINTENANCE ACCESS

• A minimum 20 foot wide maintenance right-of-way or drainage easement shall be provided for the length and width of the filter strip from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. The right-of-way shall be located such that maintenance vehicles and equipment can access the entire filter strip.

E. LANDSCAPING

- The vegetation in a filter strip can be grassed, or a combination of grass and woody plants. Filter strips that are vegetated with forest vegetation may be able to qualify as a water quality volume (WQv) credit. See Chapter 5 for more information on the stream and vegetated buffer credit.
- Designers should choose a grass that can withstand relatively high velocity flows at the entrances, and both wet and dry periods.
- For filter strips with a permeable berm, vegetation that can withstand frequent inundation must be utilized in the area where shallow ponding will occur.

4.3.9.6 Design Example

Basic Data

Small commercial lot 150 feet deep x 100 feet wide

- Drainage area (A) = 0.34 acres
- Impervious percentage (I) = 70%
- Slope equals 4%
- Manning's n = 0.25

Step 1: Calculate Maximum Discharge Loading Per Foot of Filter Strip Width (q):

Using Equation 4.3.9.1 above:

 $q = (0.00236/0.25) * (1.0)^{5/3} * (4)^{1/2} = 0.019 \text{ cfs/ft}$

Step 2: Calculate the Water Quality Flow Rate (Qwq):

(See Chapter 3 for equation information) Compute the Runoff Peak Volume (Q_{wv}) in inches for 1.1-inch rainfall (P = 1.1):

 $Q_{wv} = PRv = 1.1Rv = 1.1(0.015 + (0.0092)(70)) = 0.72$ inches

Compute modified CN:

 $CN = 1000/[10+5P+10 Q_{wv} -10(Q_{wv}^{2}+1.25Q_{wv}P)^{\frac{1}{2}}]$ = 1000/[10+5(1.1)+10(0.72)-10(0.72^{2}+1.25(0.72)1.1)^{\frac{1}{2}}] = 95.98 (Use CN = 96)

For CN = 96 and an estimated time of concentration (T_c) of 8 minutes (0.13 hours), compute the Q_{wq} for a 1.1 inch storm.

 $I_a = 0.083$ (from Table 3-14 in Chapter 3), therefore $I_a/P = 0.083/1.1 = 0.075$.

Using Figure 3-6 in Chapter 3, q_u can be estimated for a Type II storm at approximately 950 csm/in. $q_u = 950$ csm/in, and therefore:

 $Q_{wq} = q_u A Q_{wv} = (950 \text{ csm/in}) (0.34ac/640ac/mi²) (0.72in) = 0.36 \text{ cfs}$

Step 3: Calculate the Minimum Filter Width

Using Equation 4.3.9.2 above:

 $W_{fMIN} = Q_{wq}/q = 0.36/0.019 = 19$ feet

Since the width of the lot is 100 feet, the actual width of the filter strip will depend on site grading and the ability to deliver the drainage to the filter strip in sheet flow through a pea gravel filled trench.

The next step is to calculate the filter length. This calculation is different for a filter designed without a permeable berm (presented in Step 4a), than for a filter designed with a berm (presented in Step 4b).

Step 4a: Calculate the Filter Length (L_f) for a filter without a berm:

Basic Data:

- Depth of 2-year, 24-hour storm = 3.3 inches (see Chapter 3, Table 3-5)
- Use 5 minute travel (contact) time

Using Equation 4.3.9.3 above:

 $L_f = (5)^{1.25} (3.3)^{0.625} (4)^{0.5} / (3.34)(0.25) = 37.8$ feet (use 38 feet)

Note: Reducing the filter strip slope to 2% and planting a more dense grass (raising the Manning "n" to 0.35) would reduce the filter strip length to 19 feet.

Step 4b: Calculate the Filter Length (assume filter is designed with a berm):

(See Chapter 3 for equation information)

Basic Data:

- The height of the permeable berm (h) will be 6 inches (0.5 feet).
- Assume the filter width = the maximum lot width $(W_f) = 100$ feet.

Compute the Water Quality Volume (WQv) in cubic feet:

 $WQv = 1.1R_vA/12 = 1.1(0.015 + 0.0092(70))0.34/12 = 0.021 \text{ ac-ft or } 895 \text{ ft}^3$

This is the volume of the "wedge" of water that ponds behind the berm.

For a berm height of 6 inches (0.5 feet), the "wedge" of volume captured by the filter strip is:

The area of the "wedge" = $\frac{1}{2}L_{f}h$, therefore,

The volume of the "wedge" = $W_f \frac{1}{2}L_f h = (100) \frac{1}{2}(L_f)(0.5) = 895 \text{ ft}^3$

Solving for L_f , the length of the filter = 35.8 feet (use 36 feet).

Note: Increasing the berm height to 1 foot will result in a filter length of 18 feet.

4.3.9.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.9.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective use of filter strips as stormwater best management practices. It is the responsibility of the property owner to maintain all stormwater facilities in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for filter strips, along with a suggested frequency for each activity. Individual filter strips may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain filter strips properly at all times.

Ins	pection Activities	Suggested Schedule	
•	Inspect pea gravel diaphragm for clogging (i.e., standing water or sediment build-up).		
•	Inspect vegetation for signs of erosion or un-vegetated areas.	Annually (Semi-annually first year)	
•	Inspect to ensure that grass has established.		
•	Inspect general flow paths to determine if runoff discharges into and across the filter strip in an unchannelized fashion.	(Senil-annually hist year)	
Ма	intenance Activities	Suggested Schedule	
Ma •	intenance Activities Maintain a dense, healthy stand of grass and other vegetation by frequent mowing. Grass heights of 3 to 5 inches should be maintained, with a maximum grass height of 8 inches.	Suggested Schedule Regularly (frequently)	
•	Maintain a dense, healthy stand of grass and other vegetation by frequent mowing. Grass		
•	Maintain a dense, healthy stand of grass and other vegetation by frequent mowing. Grass heights of 3 to 5 inches should be maintained, with a maximum grass height of 8 inches.		

The local municipality encourages the use of the inspection checklist presented below for guidance in the inspection and maintenance of the filter strip. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the filter strip. Questions regarding inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST FOR FILTER STRIPS

Location:			Owner Change since last inspection? Y N
Owner Name	e, Address, Phone:		
Date:	Time:	Site conditions:	
		Satisfactory (S) or	

Inspection Items	Unsatisfactory (U)	Comments/Corrective Action
Healthy vegetation?		
Signs of erosion?		
Clogged pea gravel diaphragm?		
Sediment buildup behind level spreader at top?		
Sediment buildup in filter strip?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are **UNSATISFACTORY**, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:___

Inspector Name (printed)_

4.3.9.8 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.

4.3.9.9 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management*. Environmental Criteria Manual. Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures*. Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- Driscoll, E., and P. Mangarella. *Urban Targeting and BMP Selection.* Prepared by Woodward-Clyde Consultants, Oakland, CA, for U.S. Environmental Protection Agency, Washington, DC, 1990.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG), A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March 1992.
- Urbonas, B.R., J.T. Doerfer, J. Sorenson, J.T. Wulliman, and T. Fairley. *Urban Storm Drainage Criteria Manual. Vol. 3. Best Management Practices, Stormwater Quality.* Urban Drainage and Flood Control District, Denver, CO, 1992.
- Wong, S.L., and R.H. McCuen. The Design of Vegetative Buffer Strips for Runoff and Sediment Control. Appendix J in Stormwater Management for Coastal Areas. American Society of Civil Engineers, New York, New York, 1982.

This page left intentionally blank

4.3.10 Grass Channel

General Application Water Quality BMP

Description: Grass channels are vegetated open channels that are designed to filter stormwater runoff, as well as slow water for treatment by another structural BMP.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Broad bottom channel on slopes of 4% or less.
- Gentle side slopes (3:1 (H:V) or less).
- Check dams can be installed to maximize treatment.
- Requires vegetation that can withstand both relatively high velocity flows and wet and dry periods.
- Maximum contributing drainage area of 5 acres.

ADVANTAGES / BENEFITS:

- Provides pretreatment if used as part of runoff conveyance system.
- Provides partial infiltration of runoff in suitable soil conditions.
- Generally less expensive than extruded curb.
- Good for small drainage areas.
- Relatively low maintenance requirements.
- Well suited to a large number of applications.

DISADVANTAGES / LIMITATIONS:

- Cannot alone achieve 80% removal of TSS.
- Must be carefully designed to achieve low flow rates in the channel for WQv purposes (<1.0 ft/s).
- May re-suspend sediment.
- May not be acceptable for some areas because of standing water in channel.

MAINTENANCE REQUIREMENTS:

- Maintain a dense, healthy stand of grass.
- Repair areas of erosion and re-vegetate as needed.
- Remove sediment buildup.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: Yes, with pretreatment

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	Low
Maintenance Burden:	Low

LAND USE APPLICABILITY

es
es

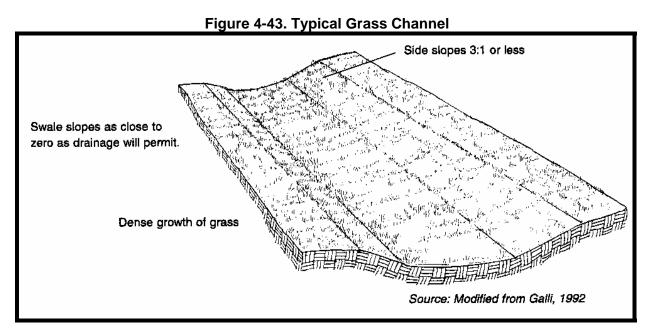
High Density/Ultra Urban Use:	*

- Commercial/Industrial Use:
 - * in certain situations

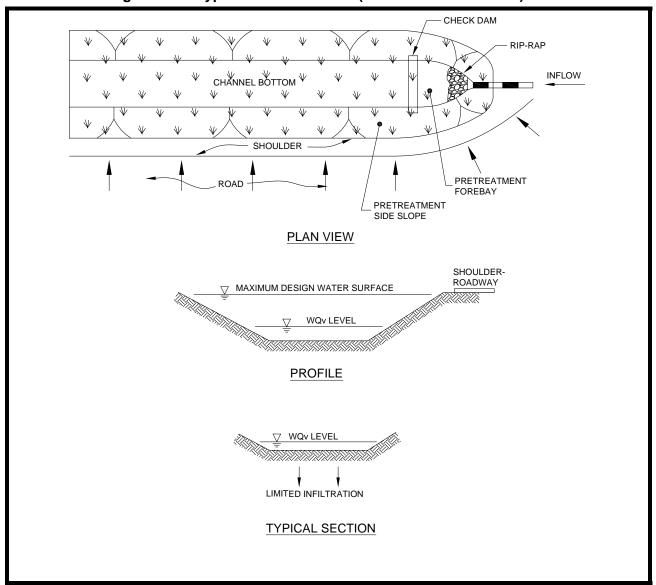
POLLUTANT REMOVAL

Total Suspended Solids:

30%



4.3.10.1 General Description


Grass channels, sometimes called biofilters, are conveyance channels that are designed to provide some treatment of runoff, as well as to slow down runoff velocities for treatment in other structural controls. Grass channels are appropriate for a number of applications including treating runoff from paved roads and from pervious areas.

In addition to their ability to provide a minimal level of filtration of pollutants, grass channels can partially infiltrate runoff from small storm events when they are located in areas that have suitable soils (types A, B, and sometimes C). When properly incorporated into a site's layout, grass channels can provide other ancillary benefits, such as reduction of impervious cover, accent of natural features and reduced construction and maintenance costs when compared with traditional extruded curb.

When designing a grass channel, the two primary considerations are channel capacity and minimization of erosion. The channel must be designed with a runoff velocity less than 1.0 foot per second during the peak discharge associated with the water quality design rainfall event, and the total length of a grass channel should provide at least 5 minutes of residence time. To enhance water quality treatment, grass channels must have broader bottoms, lower slopes and denser vegetation than most drainage channels. Additional treatment can be provided by placing check-dams across the channel below pipe inflows, and at various other points along the channel. Example schematics of grass channels are presented in Figures 4-43 and 4-44.

4.3.10.2 Stormwater Management Suitability

Grass channels are designed primarily for stormwater quality treatment and runoff conveyance and do not have the ability to provide channel protection or flood protection.

Water Quality (WQv)

To treat stormwater runoff, grass channels rely on the use of vegetation to slow runoff velocities and filter out sediment and other pollutants from urban stormwater. There can also be a reduction in runoff volume for smaller flows that infiltrate through pervious soils within the filter strip.

4.3.10.3 Pollutant Removal Capabilities

Grass channels differ from enhanced swales (discussed in Section 4.3.8 of this manual) in that they do not have an engineered filter media to enhance pollutant removal capabilities. Because of this, grass channels have a lower pollutant removal rate than for a dry or wet (enhanced) swale.

The following design pollutant removal rates are based upon a grass channel that has sufficient length for a runoff residence time (in the channel) of at least 5 minutes. The total suspended solids design pollutant removal rate of 30% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

4.3.10.4 Application and Feasibility Criteria

Grass channels can be used in a variety of development types. However, because of strict requirements for low slopes, grass channels will generally not be useful in developments that have steep topography.

General Feasibility

- Suitable for use in residential subdivisions and in non-residential areas.
- Can be used in high density/ultra-urban areas, but runoff velocity restrictions may preclude their use.
- Not suitable for use as a regional stormwater control due to small drainage area requirements.

4.3.10.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of a grass channel. Grass channels that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- The drainage area (contributing or effective) for a grass channel shall be 5 acres or less. Runoff flows and volumes from larger drainage areas prevent proper filtration and infiltration of stormwater.
- Grass channels can be used on most soils. However, grass channels shall not be used for water quality treatment purposes on soils with infiltration rates less than 0.27 inches per hour.

B. PHYSICAL SPECIFICATIONS / GEOMETRY

The following specifications apply to grass channels that are designed to achieve a % TSS removal rate of 30%. The reader should refer to, Chapter 3 for additional specifications and design information on runoff conveyance in open grass channels.

- Grass channels shall be designed on relatively flat slopes of less than 4%; channel slopes between 1% and 2% are recommended.
- A grass channel shall be designed to accommodate the peak flow for the water quality design storm, Q_{wq}, and the 2-year, 24-hour design storm without eroding (see Chapter 3 for more information on Q_{wq}). Larger flows should be accommodated by the channel if dictated by the surrounding conditions. Consult the local municipality to verify if accommodation of larger flows is required.
- Grass channels shall have a trapezoidal or parabolic cross-section and shall have side slopes of 3:1 (horizontal:vertical) or flatter.
- For trapezoidal sections, the minimum width of the channel bottom shall be no less than 2 feet. The maximum width of the channel bottom shall be no greater than 6 feet. The minimum width ensures a minimum filtering surface for water quality treatment, and the maximum width prevents braiding, which is the formation of small channels within the swale bottom. The bottom width is a dependent variable in the calculation of velocity based on Manning's equation. If a larger channel is needed, the use of a compound cross section is recommended.
- The channel shall be designed to have a depth of flow no greater than 4-inches, for the WQv design flow.

- Runoff velocities carried in the channel must be non-erosive. The full-channel design velocity will typically govern.
- The channel shall be designed such that the water quality peak flow (Q_{wq}) is contained in the channel for no less than 5-minutes. This residence time may be increased by reducing the slope of the channel, increasing the wetted perimeter, or planting a denser grass (raising the Manning's "n"). Check dams can be utilized in the channel to maximize Q_{wq} retention time. However, the channel must not be designed to hold a permanent pool of standing water. Channel slope shall be sufficient to drain the channel if infiltration does not occur.
- The depth from the bottom of the channel to groundwater shall be at least 2 feet to prevent a moist swale bottom, or contamination of the groundwater.
- Designers should choose a grass that can withstand relatively high velocity flows at the entrances, and both wet and dry periods.

Grass Channels Used for Pretreatment:

• A number of other structural controls, including bioretention areas and infiltration trenches, may utilize a grass channel as a pretreatment measure. The length of the grass channel depends on the drainage area, land use, and channel slope. To be used as a pretreatment measure, the grass channel must have a minimum length of 20 feet. Table 4-10 provides minimum lengths for grass channels based on channel slope and percent imperviousness (of the contributing drainage area).

Parameter	≤ 33% Impervious		Between 34% and 66% Impervious		≥ 67% In	pervious
Slope (max = 4%)	≤2%	> 2%	≤2%	> 2%	≤ 2%	> 2%
Grass channel min. length (feet) assumes 2-ft bottom width	25	40	30	45	35	50

Table 4-10. Grass Channel Sizing Guidance

(Source: Georgia Stormwater Management Manual)

C. SPECIAL CONSIDERATIONS FOR THE AS-BUILT CERTIFICATION

- Like any other water quality BMP, the grass channel must be shown on the as-built certification specifically as a water quality BMP. The following components must be addressed in the as-built certification:
 - 1. The channel must be adequately vegetated.
 - 2. The channel flow velocities must not exceed 1.0 foot per second for the WQv design flow.
 - 3. A mechanism for overflow of large storm events must be provided.

D. MAINTENANCE ACCESS

• A minimum 20 foot wide maintenance right-of-way or drainage easement shall be provided for the length and width of the grass channel from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. The right-of-way shall be located such that maintenance vehicles and equipment can access the entire channel.

E. LANDSCAPING

• The vegetation in a grass channel shall be composed entirely of grasses that can withstand relatively high velocity flows at the entrances and periods of inundation and drought.

4.3.10.6 Design Example

Basic Data

Small commercial lot 300 feet deep x 145 feet wide

- Drainage area (A) = 1.0 acres
- Impervious percentage (I) = 70%
- Site slope (S) = 2%

Step 1: Calculate the Water Quality Peak Flow Rate (Qwg):

(See Chapter 3 for equation information) Compute the Runoff Peak Volume (Q_{wv}) in inches for 1.1-inch rainfall (P = 1.1):

 $Q_{wv} = PRv = 1.1Rv = 1.1(0.015 + (0.0092)(70)) = 0.72$ inches

Compute modified CN:

 $CN = 1000/[10+5P+10 Q_{wv} -10(Q_{wv}^{2}+1.25Q_{wv}P)^{\frac{1}{2}}]$ = 1000/[10+5(1.1)+10(0.72)-10(0.72^{2}+1.25(0.72)1.1)^{\frac{1}{2}}] = 95.98 (Use CN = 96)

For CN = 96 and an estimated time of concentration (T_c) of 8 minutes (0.13 hours), compute the Q_{wq} for a 1.1 inch storm.

 $I_a = 0.083$ (from Table 3-14 in Chapter 3), therefore $I_a/P = 0.083/1.1 = 0.075$.

Using Figure 3-6 in Chapter 3, qu can be estimated for a Type II storm at approximately 950 csm/in.

 $q_u = 950 \text{ csm/in}$, and therefore:

 $Q_{wq} = q_u A Q_{wv} = (950 \text{ csm/in}) (1.0 \text{ac}/640 \text{ac}/\text{mi}^2) (0.72 \text{in}) = 1.07 \text{ cfs}$

Step 2: Utilize Qwa to Calculate the Minimum Channel Bottom Width

The maximum flow depth for water quality treatment should be approximately the same height of the grass. A maximum flow depth of 4 inches is allowed for water quality design. A maximum flow velocity of 1.0 foot per second for water quality treatment is required. For Manning's "n" use 0.15 for medium grass, 0.25 for dense grass, and 0.35 for very dense Bermuda-type grass.

Input variables: n = 0.15 S = 0.02 ft/ft D = 4/12 = 0.33 ft Then: $Q_{wq} = Q = VA = 1.49/n D^{2/3} S^{1/2} DW$ where: Q = peak flow (cfs)V = velocity (ft/sec) A = flow area (ft²) = WD W = channel bottom width (ft) D = flow depth (ft) (approximates the hydraulic radius for shallow flows) S = slope (ft/ft)

The above equation can be solved for the minimum channel bottom width (W), as follows:

 $(nQ)/(1.49 D^{5/3} S^{1/2}) = W = (0.15*1.07)/(1.49*0.33^{5/3}*0.02^{1/2}) = 4.8$ feet (minimum width)

The velocity of the water quality peak flow rate must be less than 1.0 feet per second (fps). Check this, as follows:

V = Q/(WD) (where WD approximates the flow area, A, for shallow flows) V = 1.07/(4.0 * 4/12) = 0.80 fps (Design confirmed: the velocity is < 1.0 fps.)

Step 3: Calculate the Channel Length

The minimum length for a 5-minute (300 seconds) residence time is calculated as follows:

V = L/T

where:

V = velocity (ft/sec) L = channel length (ft) T = residence time (seconds)

The above equation can be solved for the minimum channel length (L), as follows:

L = (0.8)(5*60) = 240 feet

Depending on the site geometry, the width or the slope or density of grass (Manning's "n" value) can be adjusted to slow the velocity and shorten the channel within the design specifications discussed above.

Step 4: Complete the Grass Channel design for other design storms

Refer to, Chapter 3 to complete the grass channel design for a specified design storm event.

4.3.10.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.10.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective use of grass channels as stormwater best management practices. It is the responsibility of the property owner to maintain all stormwater facilities in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for grass channels, along with a suggested frequency for each activity. Individual grass channels may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain grass channels properly at all times.

Ins	pection Activities	Suggested Schedule
•	Inspect check dams (if used) for clogging (i.e., standing water or sediment build-up). Inspect vegetation for signs of erosion or un-vegetated areas. Inspect to ensure that grass is healthy and well-established.	Annually (Semi-annually first year)
Mai	intenance Activities	Suggested Schedule
•	Maintain a dense, healthy stand of grass and other vegetation by frequent mowing. Grass heights of 3 to 5 inches should be maintained, with a maximum grass height of 8 inches.	Regularly (frequently)
•	Remove trash, debris and sediment accumulated in the channel or behind check dams (if present).	
٠	Repair areas of erosion and re-vegetate.	As-needed
٠	Re-vegetate as need to maintain healthy vegetation.	

The local municipality encourages the use of the inspection checklist presented below for guidance in the inspection and maintenance of the grass channel. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the channel. Questions regarding inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST FOR GRASS CHANNELS

Location: ____ Owner Change since last inspection? Y N Owner Name, Address, Phone: ___ Date: _____ Time: _____ ____ Site conditions:__ Satisfactory (S) or Inspection Items **Comments/Corrective Action** Unsatisfactory (U) Healthy vegetation? Signs of erosion? Clogged check dams? Sediment build-up on channel bottom? Standing water for extended periods? Soggy channel bottom for extended periods? Other (describe)? Hazards Have there been complaints from residents? Public hazards noted?

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____ Inspector Name (printed)____

4.3.10.8 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.

4.3.10.9 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management*. Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Horner, R.R. *Biofiltration Systems for Storm Runoff Water Quality Control.* Washington State Department of Ecology, 1988.
- IEP. Vegetated Buffer Strip Designation Method Guidance Manual. Narragansett Bay Project, 1991.
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.

4.3.11 Modular Porous Paver Systems

General Application Water Quality BMP

Description: A pavement surface composed of structural units with void areas that are filled with pervious materials such as sand or grass turf. Porous pavers are installed over a gravel base course that provides storage as runoff infiltrates through the porous paver system into underlying permeable soils.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Design considerations are similar to any paved area (soil properties, load-bearing design, hydrologic design of pavement and subgrade).
- Soil infiltration rate of 0.5 in/hr or greater is required, if no underdrain is present.
- The infiltration rate of native soil determines appropriateness and need for an underdrain. Soil groups "D" and "C" typically require and underdrain.
- Not appropriate for heavy or high traffic areas.

ADVANTAGES / BENEFITS:

- Reduces runoff volume, attenuates peak runoff rate and outflow.
- Can be used as pretreatment for other BMPs for pollutants other than TSS.
- High level of pollutant removal for pollutants other than TSS.

DISADVANTAGES / LIMITATIONS:

- Sediment-laden runoff can clog modular porous paver systems causing failure.
- Subgrade cannot be overly compacted.
- Construction must be sequenced to avoid compaction and clogging pavement.

MAINTENANCE REQUIREMENTS:

- Vacuum to increase porous paver system life and avoid clogging.
- Ensure that contributing area is clear of debris and areas of erosion.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: Yes, but does not provide stormwater treatment.

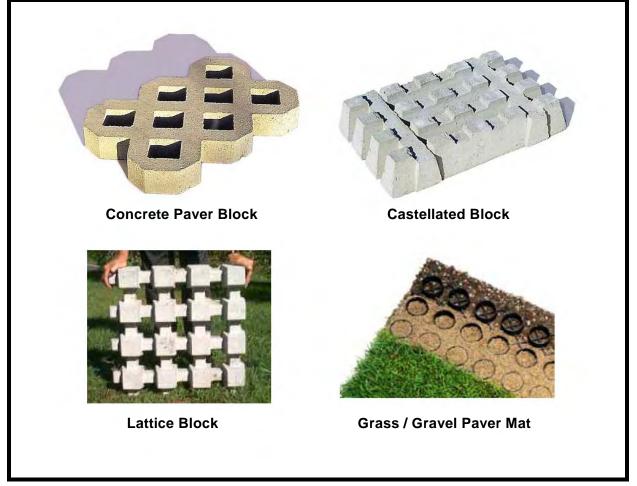
COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	Med-High
Maintenance Burden:	Med

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	No
Commercial/Industrial Use:	No

POLLUTANT REMOVAL


Total Suspended Solids: N/A

4.3.11.1 General Description

While porous paver systems are not a recommended practice to reduce TSS, they are an excellent application to reduce the effective impervious area on a site, therefore, reducing the Water Quality Volume (WQv) that must be treated. Modular porous pavers are structural units, such as concrete blocks, bricks, or reinforced plastic mats, with regularly dispersed void areas used to create a load-bearing pavement surface. The void areas are filled with pervious materials (gravel, sand, or grass turf) to create a system that allows for the infiltration of stormwater runoff. Porous paver systems provide water quality benefits in addition to groundwater recharge and a reduction in stormwater volume.

There are many different types of modular porous pavers that are available from different manufacturers, including both pre-cast and mold in-place concrete blocks, concrete grids, interlocking bricks, and plastic mats with hollow rings or hexagonal cells (see Figure 4-45). The two main types of modular porous pavement systems are plastic grid and open cell paving grid.

Figure 4-45. Examples of Modular Porous Pavers

Plastic grid systems are often referred to as *geocells* and are defined by manufactured plastic lattices or mattresses that form networks of box-like cells that are filled with earth material. The lattice is typically 3 to 8 inches thick, and the cells range from 8.8 to 20 inches wide. Porosity and permeability of these systems is entirely dependent on the type of fill and vegetation that exists within each cell. Like any other pavement surface, geocells require a firm gravel base that provides strength and storage capacity as runoff infiltrates. Geocells are lightweight and easy to transport and install. However, they may be jarred easily by moving traffic, resulting in cell failure, cell movement, and possibly the need for replacement.

Open cell paving grids, commonly called *block pavers or grid pavers*, are structural units, such as concrete blocks or bricks with regularly spaced voids that penetrate their entire thickness. Grids are made of concrete or brick and the open cells are filled with porous aggregate or vegetated soil. Block pavers are more rigid and, therefore, can bear larger traffic loads than plastic grid systems.

Modular porous pavement systems are typically placed on a gravel (stone aggregate) base course. Runoff infiltrates through the porous paver surface into the gravel base course, which acts as a storage reservoir as it infiltrates to the underlying soil. The infiltration rate of the soils in the subgrade must be adequate to support drawdown of the entire runoff capture volume within 24 to 48 hours. If the surrounding soil infiltration is insufficient or if the potential for contamination of groundwater exists from pollutants such as chemicals, fertilizers, petroleum products, fats or greases, an underdrain is required to allow discharge of the runoff to additional BMPs for treatment. Additionally, special care must be taken during construction to avoid undue compaction of the underlying soils, which could affect the soils' infiltration capability.

Construction and maintenance costs and requirements should be considered when utilizing porous paver systems. Modular porous paver systems require a high level of construction workmanship to ensure that they function as designed. In addition, the repair or replacement of the surfaces can be costly should they become clogged.

4.3.11.2 Stormwater Management Suitability

Porous paver systems can not be used for stormwater treatment (i.e., 80% TSS removal) or flood control. The major benefit in using these systems lies in the overall reduction of stormwater runoff that can be provided. Areas covered by porous paver systems can be considered as pervious surfaces, thereby reducing water quality treatment and channel protection volumes, and flood protection peak discharges.

Water Quality (WQv)

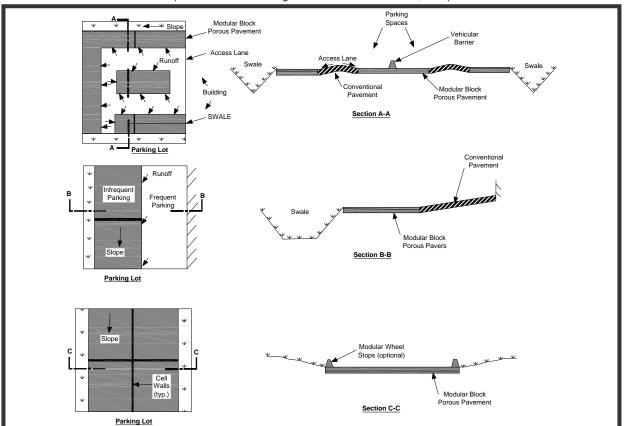
Porous paver systems do not have the ability to provide stormwater quality treatment for total suspended solids (TSS). However, these systems provide for infiltration of stormwater and can provide for the removal of other pollutants, such as hydrocarbons (e.g., motor oil and gasoline).

4.3.11.3 Pollutant Removal Capabilities

Porous paver systems provide for the infiltration of stormwater runoff and they have a high removal rate of soluble pollutants. Pollutants become trapped and are then absorbed or broken down in the underlying soil layers. However, due to the potential for clogging, porous paver surfaces shall **not** be used for the removal of sediment or other particulate pollutants.

4.3.11.4 Application and Feasibility Criteria

Modular porous paver systems are typically used in low-traffic areas, such as:


- parking pads in parking lots;
- overflow parking areas;
- residential driveways;
- residential street parking lanes;
- recreational trails;
- golf cart and pedestrian paths; and
- emergency vehicle and fire access lanes.

Porous paver systems shall not be used in high traffic areas due to the potential for cell compaction and failure. Examples of paver systems that have been used for some of the above listed applications are presented in Figures 4-46 and 4-47.

Figure 4-46. Examples of Porous Paver Surfaces (Sources: Invisible Structures, Inc.; EP Henry Corp.)

Figure 4-47. Typical Modular Porous Paver System Applications

4.3.11.5 Planning and Design Standards

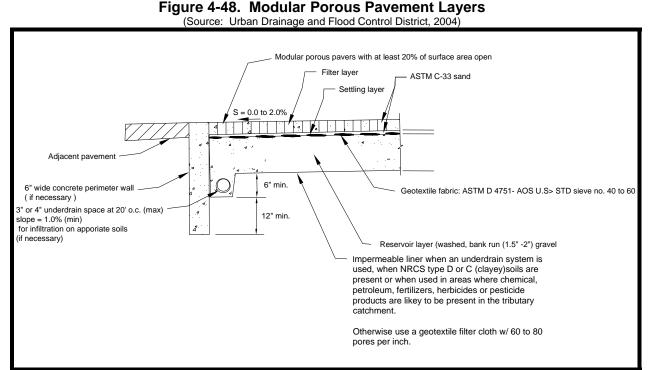
The Northeast Tennessee Stormwater Planning Group's design standards for modular porous paver systems are presented below. Design specifications developed by a commercial vendor for prefabricated proprietary systems can also be utilized, but must be approved where such specifications differ and/or are less stringent from the standards presented below. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. CONSTRUCTION SEQUENCING

- Ideally, the construction of the porous paver system should take place **after** the construction site has been stabilized.
- In the event that the system is not constructed after site stabilization, care should be taken during construction to minimize the compaction of the soil in the area of the porous paver system and the deposition of sediments from disturbed, unstabilized areas to the system after its installation.
- Diversion berms and erosion prevention and sediment controls shall be maintained around the paver system area during all phases of construction. No runoff or sediment shall enter the area prior to completion of construction and the complete stabilization of construction areas.
- Porous paver systems shall not be used as a temporary sediment trap for construction activities.
- During and after excavation of the area where the porous paver system will be located, all excavated materials shall be placed downstream, away from the porous paver location, to prevent redeposition of the material during runoff events.

B. LOCATION AND SITING

- The use of porous paver systems is limited to low traffic volume areas, such as those identified above, that have a minimum soil infiltration rate of 0.5 in/hr, if an underdrain system is not present.
- Geotechnical testing of potential installation sites is required to verify an acceptable infiltration rate.
- Modular porous paver systems should not be located:
 - >Within 4 feet above bedrock or the seasonally high water level,
 - ≻Within 100 feet of a well,
 - ➢ Within 10 feet of a building foundation that is above the proposed porous paver area or 100 feet from a building foundation that is below the proposed porous paver location,
 - >Within close proximity of sources of contaminants such as gas stations,


≻On slopes greater than 5%.

• Because porous paver systems are not stormwater control devices, ideally, the area where the porous paver system is located should not receive stormwater runoff discharges from other areas. However, if that situation cannot be avoided, pretreatment of the discharges must be performed to remove sediment and other solids that can clog the porous paver system. Further, stormwater runoff discharging to the paver system area must flow into the area in a manner that will not cause damage to, or undermine, the porous paver system. Low velocity, unchannelized discharges are most favorable.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

Several options exist for the top layer or surface of modular porous paver systems. The top layer should be chosen depending on strength required due to traffic loads, infiltration needs, and the manufacturer's recommendations. However, the sub-layers are generally similar, consisting of four to five layers as shown in Figure 4-48. Descriptions of each layer shown in Figure 4-48 are presented below:

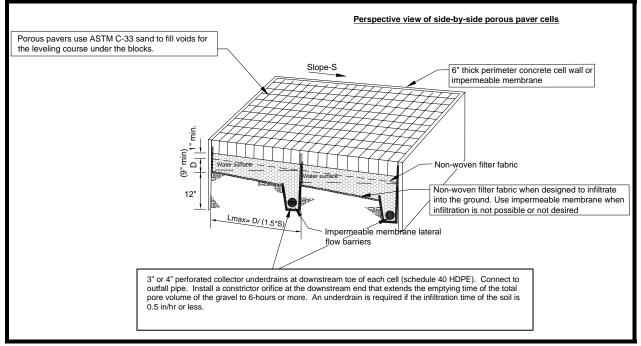
- The <u>Modular Porous Paver Layer</u> shall consist of a modular pavement grid of plastic, concrete, or brick and an aggregate or a vegetation medium. The depth of this layer shall be 2 to 8 inches deep depending on required bearing strength, pavement design requirements, and manufacturer's specifications.
- The <u>Settling Layer</u> shall consist of a 0.5-inch diameter crushed stone to a depth of 1 to 2 inches. This layer serves to stabilize the porous asphalt or concrete layer and can be combined with the reservoir layer using suitable stone.
- The <u>Reservoir Layer</u> (or Open Graded Base Material) shall consist of washed, bank-run gravel, 1.5 to 2.5 inches in diameter with a void space of about 40%. The depth of this layer depends on the desired storage volume, which is a function of the soil infiltration rate and void spaces, but typically ranges from two to four feet. The layer must have a minimum depth of 9 inches. The layer shall be designed to drain completely in 48 hours and to store, at a minimum, the WQv. Aggregate contaminated with soil is prohibited for use in this layer. The aggregate reservoir layer can be avoided or minimized if the subgrade is sandy and there is adequate time to infiltrate the necessary runoff volume into the sandy soil without by-passing the water quality volume. Consult the manufacturer's specifications to determine the appropriate layer design.

- The <u>Bottom Filter Layer</u> (not shown in diagram) is not always required. In cases where infiltration needs to be increased, a 6 inch layer of sand or a 2 inch thick layer of 0.5 inch crushed stone can be installed. The layer shall be graded to be completely flat to promote infiltration across the entire surface. This layer serves to stabilize the reservoir layer, to protect the underlying soil from compaction, and act as the interface between the reservoir layer and the filter fabric covering the underlying soil.
- A <u>Lateral Flow Barrier</u> as shown in Figure 4-49 is recommended around the modular porous paver area to prevent flow of water downstream and then surfacing at the toe of the porous paver installation. If the porous paver system is large enough, it may be divided into cells with cut-off barriers (also called cell walls) having a maximum distance (L_{max}) between them that shall not exceed:

Equation 4.3.11.1
$$L_{max} =$$

where: L_{max} = Maximum distance between cut-off membrane normal to the flow (ft)

- S = Slope of the reservoir layer (ft/ft)
- D = Depth of reservoir layer (ft)
- <u>Filter Fabric</u> serves to inhibit soil from migrating into the reservoir and reducing storage capacity. The entire trench area, including the sides, shall be lined with filter fabric prior to placement of the aggregate.
- The <u>Underlying Soil</u> shall have an infiltration capacity of at least 0.5-inches/hour, but preferably greater than 0.5-inches/hour when an underdrain system is not present. Soils at the lower end of this range may not be suited for a full infiltration system or may require additional infiltration measures such as a perforated pipe or additional sand layer. Test borings are recommended to determine the soil classification, seasonal high ground water table elevation, and impervious substrata, and an initial estimate of permeability.



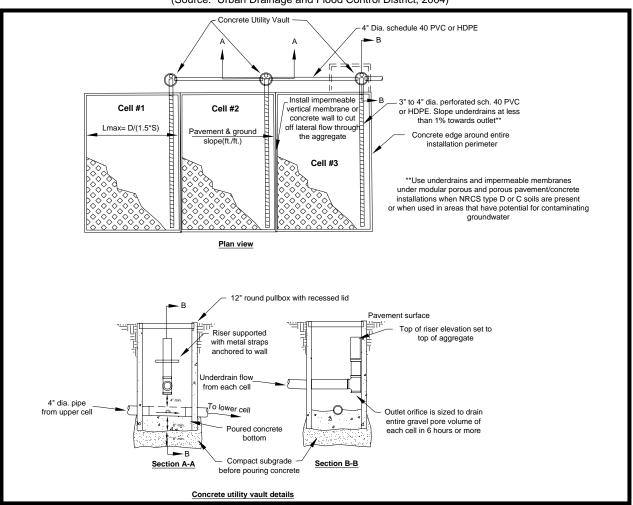
 $L_{\max} = \frac{D}{1.5S}$

Figure 4-49. Schematic of Lateral Flow Barriers

• The <u>Underdrain System</u> (if required) shall be designed per the modular porous paver system manufacturers' recommendation or a typical underdrain schematic (taken from the Urban Storm Drainage Criteria Manual-Volume 3 - Best Management Practices of the Urban Drainage and Flood Control District in Denver, Colorado). An underdrain system is shown in Figure 4-50.

D. PRETREATMENT

• Stormwater runoff that discharges to the modular porous paver system from surrounding areas require pretreatment to remove sediment and debris. Pretreatment can be provided by a sediment forebay or equivalent upstream pretreatment. A sediment forebay is designed to remove incoming sediment from the stormwater flow prior to run-on to the area covered by porous pavers.


If a sediment forebay is used, it shall be sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep. The pretreatment storage volume is part of the total WQv design requirement and may be subtracted from the WQv calculated for the site.

E. OUTLET STRUCTURES

• If an underdrain is incorporated into the design, an outlet pipe shall be provided from the underdrain system to the local stormwater conveyance system. Discharges shall not exit the outlet pipe in an erosive manner. Due to the slow rate of discharge, outlet erosion protection is generally unnecessary for modular porous pavement systems.

F. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right of way or easement shall be provided from a driveway, public or private road. The maintenance access easement shall have a minimum unobstructed drive path width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.

Figure 4-50. Schematic of an Underdrain System

(Source: Urban Drainage and Flood Control District, 2004)

G. LANDSCAPING

- Porous paver systems can be designed with a grass cover to aid in pollutant removal and prevent clogging. The grass should be capable of withstanding traffic and parking requirements, and frequent periods of inundation and drought.
- Ideally, landscaped areas that may discharge, or are adjacent to, the porous paver system should consist largely of grassy vegetation and have no exposed soil. Mulch, sticks, and leaves are debris that can clog the surface of the paver system, reducing its ability to infiltrate stormwater runoff and potentially affecting the structural integrity of the system. If such landscaped areas are utilized near the paver system, care should be taken to design and maintain the landscaped area in a manner and frequency that prevents such debris from entering the paver area, or ensures frequent removal of such debris from the area. For example, maintenance practices should increase during the fall to remove leaves from the paver system if deciduous trees are located near the system.

H. SPECIAL CONSIDERATIONS FOR THE AS-BUILT CERTIFICATION AND PLANS/PLATS

• Because the use of the modular porous paver area reduces the WQv for the site and provides for stormwater treatment of some pollutants, the area must be shown on the as-built certification and the final plat specifically as a water quality BMP. The following components must be addressed in the as-built certification and final plat:

- 1. The boundaries of the porous pavement area; clearly identified with a note that states "Do not pave over this area. Only porous pavement is allowed in this area".
- 2. Clear identification of the manufacturer and type of paver system used.
- 3. A copy of the manufacturer's specifications for the design and installation of the system.
- 4. The underdrain design and specifications (if an underdrain is utilized).

4.3.11.6 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.11.6 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective use of porous paver systems as stormwater best management practices. It is the responsibility of the property owner to maintain all stormwater facilities in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for porous paver systems, along with a suggested frequency for each activity. Individual porous paver systems may have more, or less, frequent maintenance needs, depending upon a variety of factors including traffic volume, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain porous paver systems properly at all times.

Inspection Activities	Suggested Schedule
• Determine if the porous paver surface is free of sediment and debris (e.g., mulch, leaves, trash, etc.).	As needed
• Determine if standing water exists for long periods of time after a storm event.	
• Check that stormwater is not stored in the paver system longer than 48 hours after a storm.	
 Inspect vegetated areas that drain to the paver system and the paver system itself for evidence of erosion. 	Monthly
 Inspect the surface of the paver system for structural integrity, deterioration, compaction, or spalling. 	Annually
Maintenance Activities	Suggested Schedule
• Ensure that contributing area and porous paver surface are clear of debris (e.g., mulch, leaves, trash, etc.).	
• Stabilize (i.e., cover exposed soil) vegetated areas that discharge, or are adjacent to, the porous paver system. Grassy areas should be fully vegetated and mowed, with grass clippings removed. Landscaped areas should be designed and/or maintained such that they will not discharge debris (e.g., mulch, leaves) to the paver system, or that such debris is removed often.	As needed
Vacuum sweep porous paver surface to keep free of sediment.	Quarterly
Repair or reinstall the porous paver system, including the top and base course.	As needed

Additional Maintenance Considerations and Requirements

- Additional maintenance requirements for a porous paver system should be obtained from the manufacturer of the system and included in the Operations and Maintenance Plan for the site.
- The local municipality encourages the use of the inspection checklist presented below for guidance in the inspection and maintenance of the porous paver system. Additional items should be added to the list, based on the inspection and maintenance information provided by the manufacturer of the pavers. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the unit. Questions regarding inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST – POROUS PAVEMENT SYSTEMS

Location:			Owner Change since last inspection? Y N
Owner Name	e, Address, Phone:		
Date:	Time:	Site conditions:	

Date:	Time:	

 Sile	COLIC	JUIOI	IS

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Signs of clogging (e.g., standing water)?		
Debris (e.g., mulch, trash) accumulation?		
Sediment accumulation?		
Standing water?		
Erosion from paver system underdrain?		
Exposed soil in areas discharging or adjacent to the paver system?		
Other (describe)?		
Other (describe)?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

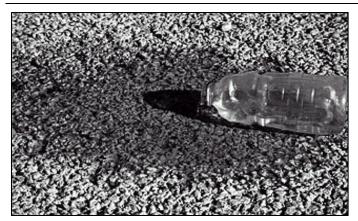
Corrective Action Needed		Due Date
L		
Inspector Signature:	Inspector Name (printed)	

4.3.11.7 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual, Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- City of Knoxville. *Knoxville Best Management Practices Manual*. City of Knoxville Stormwater Engineering Division, March 2003.
- Metropolitan Council. *Minnesota Urban Small Sites BMP Manual.* Metropolitan Council Services, St. Paul Minnesota, 2001.
- Urban Drainage and Flood Control District, Denver, Colorado. Urban Storm Drainage Criteria Manual Volume 3 Best Management Practices Stormwater Quality. 2004

4.3.11.8 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- US EPA. Storm Water Technology Fact Sheet: Modular Treatment Systems. EPA 832-F-99-044, Office of Water, 1999.



This page left intentionally blank

4.3.12 Porous Pavement

Description: Infiltration practices that are alternatives to traditional asphalt and concrete surfaces. Stormwater runoff is infiltrated into the ground through a permeable layer of pavement and is naturally filtered.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Design considerations are similar to any paved area (soil properties, load-bearing design, hydrologic design of pavement and subgrade).
- Soil infiltration rate of 0.5 in/hr or greater is required if no underdrain is present.
- Soil groups "D" and "C" typically require and underdrain.
- Not appropriate for heavy or high traffic areas.
- Not appropriate as a water quality treatment BMP for drainage discharged from other areas.

ADVANTAGES / BENEFITS:

- Reduces runoff volume, attenuates peak runoff rate and outflow.
- Can be used as pretreatment for other BMPs for pollutants other than TSS.
- High level of pollutant removal for pollutants other than TSS.

DISADVANTAGES / LIMITATIONS:

- Sediment-laden runoff can clog porous pavement causing failure.
- Subgrade cannot be overly compacted.
- Construction must be sequenced to avoid compaction and clogging of pavement.

MAINTENANCE REQUIREMENTS:

- Vacuum to increase porous pavement life and avoid clogging.
- Ensure that contributing area is clear of debris and areas of erosion.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: Yes, but does not provide stormwater treatment.

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	Med - High
Maintenance Burden:	Med

LAND USE APPLICABILITY

Residential/Subdivision Use:	Yes
High Density/Ultra Urban Use:	No
Commercial/Industrial Use:	No

POLLUTANT REMOVAL

Total Suspended Solids:

N/A

4.3.12.1 General Description

Porous pavement is a paved concrete or asphalt driving surface that permits the infiltration of water through the pavement and into the underlying soil. When considering the post-development stormwater runoff from a site, porous pavement is a best management practice (BMP) that allows a developed land surface to "appear" more like undeveloped land – runoff volumes and peak discharges of stormwater runoff from a developed site with porous pavement will be less than on a site without porous pavement. Porous pavement is an excellent application to reduce the effective impervious area on a site, therefore, reducing the design volumes and peak discharges that must be controlled. This will allow a reduction in the cost of other stormwater infrastructure, a fact that may offset the greater placement cost somewhat. Porous pavement can also eliminate problems with standing water, provide for groundwater recharge, control erosion of streambeds and riverbanks, facilitate pollutant removal, reduce thermal pollution of receiving waters, and provide for a more aesthetically pleasing site. **Porous pavement is not a BMP that can be used to remove total suspended solids (TSS).**

There are two types of porous pavement: porous asphalt and pervious concrete. Porous asphalt pavement consists of open-graded coarse aggregate, bonded together by asphalt cement, with sufficient interconnected voids to make it highly permeable to water. Pervious concrete consists of a specially formulated mixture of Portland cement, uniform, open-graded coarse aggregate, and water. Pervious concrete has enough void space to allow rapid percolation of water through the pavement. The void space in pervious concrete is in the 15%-22% range compared to 3%-5% for conventional pavements. The permeable surface is placed over a layer of open-graded gravel and crushed stone. The void spaces in the stone act as a storage reservoir for runoff. Pervious concrete is considered to be more durable than porous asphalt and is thought to have a greater ability than pervious asphalt to maintain its porosity in hot weather.

Porous pavements are best applied in areas that experience low vehicular traffic including parking lots and overflow parking areas; portions of streets such as residential parking lanes; driveways; plazas; and pedestrian or golf cart paths. Porous pavements are not recommended, and will not be approved, for use on driving surfaces that experience high traffic volume, heavy loads, and sediment-laden traffic (e.g., construction areas, dump sites).

A drawback to porous pavement is the cost and complexity of it compared to conventional pavements. Porous pavement requires a very high level of construction workmanship to ensure that it functions as designed. Like any BMP, porous pavement can fail, either for use as a driving/parking surface or an impervious area reduction measure, when improperly designed, constructed, or used. Past failures of porous pavement have been attributed to poor design, inadequate construction techniques, soils with low permeability, heavy vehicular traffic, and poor maintenance (USEPA, 1999). This measure, if used, should be monitored and maintained over the life of the development.

Porous pavement is designed primarily for impervious area reduction and the subsequent reduction in stormwater treatment volumes and peak discharges, particularly for smaller storm events. For some smaller sites, trenches can be designed to capture and infiltrate the water quality volume (WQv), and in some cases, the channel protection volume (CPv). Modifications or additions to the standard design presented in this section have been used to pass flows and volumes in excess of the WQv, or to increase storage capacity or treatment. These include:

- placing a perforated pipe near the top of the crushed stone reservoir to pass excess flows after the reservoir is filled;
- providing surface detention storage in a parking lot, adjacent swale, or detention basin with suitable overflow conveyance;
- connecting the stone reservoir layer to a stone filled trench;
- adding a sand layer and perforated pipe beneath the stone layer for filtration of the water quality volume; or,
- placing an underground detention tank or vault system beneath the layers.

Porous pavement has the positive characteristics of volume reduction due to infiltration, groundwater recharge, and an ability to blend into the normal urban landscape relatively unnoticed.

4.3.12.2 Stormwater Management Suitability

Water Quality (WQv)

Porous pavement is designed solely for impervious area reduction and stormwater quality treatment of pollutants other than TSS. Porous pavements shall not be used for TSS removal. These pavements require some pretreatment BMP such as a filter strip for runoff entering the pavement to prevent clogging from sediment.

4.3.12.3 Pollutant Removal Capabilities

Porous pavement has a high removal of soluble pollutants, where they become trapped, absorbed or broken down in the underlying soil layers. However, due to the potential for clogging, porous pavement surfaces shall **not** be used for the removal of sediment or other particulate pollutants.

4.3.12.4 Application and Feasibility Criteria

Porous pavement is applicable only for use in low-traffic areas that do not encounter heavy loads and/or sediment-laden traffic or runoff, such as:

- parking pads in parking lots;
- overflow parking areas;
- residential driveways;
- residential street parking lanes;
- recreational trails;
- golf cart and pedestrian paths; and,
- emergency vehicle and fire access lanes.

4.3.12.5 Planning and Design Standards

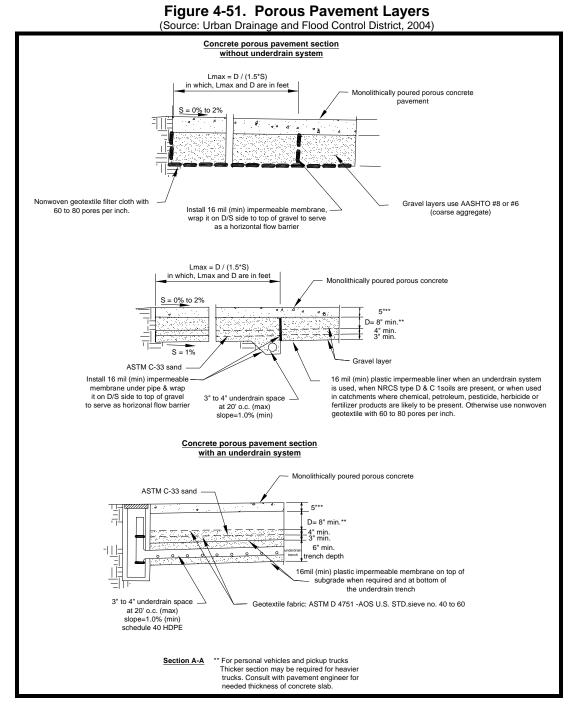
The Northeast Tennessee Regional Stormwater Planning Group's design standards for porous pavement are presented below. Design specifications developed by a commercial vendor for prefabricated proprietary systems can also be utilized, but must be approved where such specifications differ and/or are less stringent from the standards presented below. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. CONSTRUCTION SEQUENCING

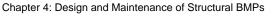
- Ideally, the construction of the porous pavement should take place after the construction site has been stabilized.
- In the event that the pavement is not constructed after site stabilization, care should be taken during construction to minimize the compaction of the soil in the area of the porous pavement and the deposition of sediments from disturbed, unstabilized areas.
- Diversion berms and erosion prevention and sediment controls shall be maintained around the porous pavement area during all phases of construction. No runoff or sediment shall enter the area prior to completion of construction and the complete stabilization of construction areas.
- Porous pavement shall not be used as a temporary sediment trap for construction activities.
- During and after excavation of the porous pavement area, all excavated materials shall be placed downstream, to prevent redeposition of the material during runoff events.

B. LOCATION AND SITING

• Suitable sites for porous pavement are limited to low traffic volume areas with a minimum soil infiltration



rate of 0.5 in/hr without an underdrain system. Ideally, the soil should allow the entire runoff capture volume to be discharged from the porous pavement within 24 to 48 hours.

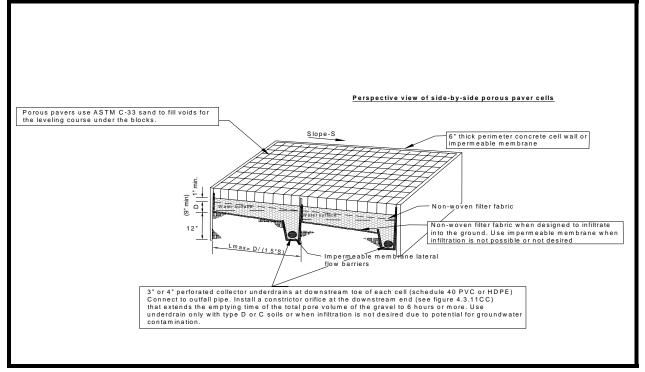

- Geotechnical testing of the proposed installation site is required to verify an acceptable infiltration rate.
- Porous pavement shall <u>not</u> be located:
 - > within two (2) feet above bedrock or the seasonally high water level,
 - \succ within 100 feet of a well,
 - within ten (10) feet of a building foundation that is above the proposed porous pavement area or 100 feet from a building foundation that is below the proposed porous pavement location,
 - > within close proximity of sources of contaminants such as gas stations,
 - \triangleright on slopes greater than 5%.
- Ideally, slopes should be flat or nearly flat to facilitate infiltration as opposed to runoff.
- The seasonally high water table or bedrock should be at least two feet below the bottom of the gravel layer if infiltration is to be relied on to remove the stored volume.
- Because porous pavement is not a stormwater control device, the area where the porous pavement is located should not receive stormwater runoff discharges from other areas. However, if that situation cannot be avoided, pretreatment of the discharges must be performed to remove sediment and other solids that can clog the porous pavement. Further, stormwater runoff discharging to the porous pavement area must flow into the area in a manner that will not cause damage to, or undermine, the porous pavement. Low velocity, unchannelized discharges are most favorable.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

Porous asphalt or pervious concrete for the top layer or surface of the porous pavement should be chosen depending on strength required due to traffic loads, infiltration needs, and other site constraints. However, the sub-layers are generally similar, consisting of four to five layers as shown in Figure 4-51. The aggregate reservoir layer can sometimes be avoided or minimized if the subgrade is sandy and if there is adequate time to infiltrate the water quality volume into the sandy soil without bypassing any of the water quality volume. Descriptions of each of the layers is presented below.

- <u>Porous Pavement Layer</u> This layer consists of a porous mixture of concrete or asphalt or a modular pavement grid of plastic, concrete, or brick and an aggregate or a vegetation medium. This layer is usually 2 to 4 inches deep depending on required bearing strength, pavement design requirements, and manufacturer's specifications.
- <u>Reservoir Layer or Open Graded Base Material</u> The reservoir gravel base layer consists of washed, bank-run gravel, 1.5 to 2.5-inches in diameter with a void space of about 40%. The depth of this layer depends on the desired storage volume, which is a function of the soil infiltration rate and void spaces, but typically ranges from two to four feet. The layer must have a minimum depth of nine inches. The layer shall be designed to drain completely in 48 hours. If the porous pavement area is

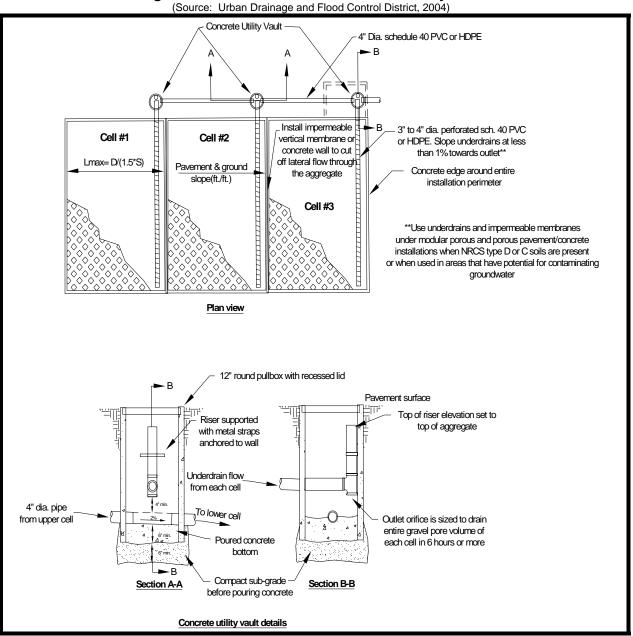
being utilized for stormwater quality treatment (for pollutants other than sediment/TSS), then the area must be designed to store, at a minimum, the WQv. Aggregate contaminated with soil shall not be used for the reservoir layer.


- <u>Bottom Filter Layer</u> In cases where infiltration needs to be increased, a 6-inch layer of sand or a 2-inch thick layer of 0.5-inch crushed stone can be installed. The layer must be completely flat to promote infiltration across the entire surface. This layer serves to stabilize the reservoir layer, to protect the underlying soil from compaction, and act as the interface between the reservoir layer and the filter fabric covering the underlying soil.
- A <u>Lateral Flow Barrier</u> as shown in Figure 4-52 is recommended around the porous pavement area to prevent flow of water downstream and then surfacing at the toe of the porous pavement installation. If the porous pavement area is large enough, it may be divided into cells with cut-off barriers having a maximum distance (L_{max}) between them that shall not exceed:

$$L_{\rm max} = \frac{D}{1.5S}$$

where: L_{max} = Maximum distance between cut-off membrane normal to the flow (ft)

- S = Slope of the reservoir layer (ft/ft)
- D = Depth of reservoir layer (ft)



- <u>Filter Fabric</u> It is very important to line the entire trench area, including the sides, with filter fabric prior to placement of the aggregate. The filter fabric serves to inhibit soil from migrating into the reservoir and reducing storage capacity.
- <u>Underlying Soil</u> The underlying soil should have an infiltration capacity of at least 0.5-inches/hour but preferably greater than 0.5-inches/hour. Soils at the lower end of this range may not be suited for a full infiltration system or may require additional infiltration measures such as a perforated pipe or

additional sand layer. Test borings are recommended to determine the soil classification, seasonal high ground water table elevation, and impervious substrata, and an initial estimate of permeability.

• The <u>Underdrain System</u> (if required) shall be designed per the porous pavement manufacturers' recommendation or through the use of another reference. A typical underdrain schematic is shown in Figure 4-53.

D. PRETREATMENT

- Although it is not recommended that runoff from other areas be discharged to the porous pavement area, stormwater runoff that discharges to the porous pavement system from surrounding areas requires pretreatment to remove sediment and debris. Pretreatment can be provided by a sediment forebay or equivalent upstream pretreatment. A sediment forebay is designed to remove incoming sediment from the stormwater flow prior to run-on to the area covered by porous pavement.
- If a sediment forebay is used, it shall be sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep. The pretreatment storage volume is part of the total WQv design requirement and may be subtracted from the WQv calculated for the site.

E. OUTLET STRUCTURES

• If an underdrain system is incorporated into the design, an outlet pipe shall be provided from the underdrain system to the local stormwater conveyance system. Discharges shall not exit the outlet pipe in an erosive manner. Due to the slow rate of discharge, outlet erosion protection is generally unnecessary for modular porous pavement systems.

F. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right-of-way or easement shall be provided from a driveway, public or private road. The maintenance access easement shall have a minimum unobstructed drive path width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.

G. LANDSCAPING

 Landscaped areas that may discharge, or are adjacent to, the porous pavement should consist largely of grassy vegetation and have no exposed soil. Mulch, sticks, and leaves are debris that can clog the surface of the porous pavement, reducing its ability to infiltrate stormwater runoff. If such landscaped areas are utilized near the porous pavement, care should be taken to design and maintain the landscaped area in a manner and frequency that prevents such debris from entering the porous pavement, or ensures frequent removal of such debris from the area. For example, maintenance practices should increase during the fall to remove leaves from the porous pavement if deciduous trees are located near the system.

H. SPECIAL CONSIDERATIONS FOR THE AS-BUILT CERTIFICATION AND PLANS/PLATS

- Because the use of porous pavement reduces the WQv for the site and provides for stormwater treatment of some pollutants, the area must be shown on the as-built certification and the final plat specifically as a water quality BMP. The following components must be addressed in the as-built certification and final plat:
 - 1. The boundaries of the porous pavement area; clearly identified with a note that states "Pervious pavement area. Do not pave with impervious pavement surfaces."
 - 2. Clear identification of the type of porous pavement used.
 - 3. The underdrain design and specification (if an underdrain is utilized).

4.3.12.6 Maintenance Requirements and Inspection Checklist

Note: Section 4.3.12.6 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective use of porous pavement as a stormwater best management practice. It is the responsibility of the property owner to maintain all stormwater facilities in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for porous pavement, along with a suggested frequency for each activity. Individual porous pavement applications may have more, or less, frequent maintenance needs, depending upon a variety of factors including traffic loads, the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain porous pavement properly at all times.

Ins	pection Activities	Suggested Schedule
•	Ensure that the porous pavement surface is free of sediment and debris (e.g., mulch, leaves, trash, etc.).	As needed
•	Ensure that the contributing area upstream of the porous pavement surface is free of sediment and debris.	As needed
•	Check to make sure that the porous pavement dewaters between storms.	Monthly
•	Inspect the surface for structural integrity. Inspect for evidence of deterioration or spalling.	Annually
Ма	intenance Activities	Suggested Schedule
Ma •	Intenance Activities Ensure that contributing area and porous pavement surface are clear of debris (e.g., mulch, leaves, trash, etc.).	Suggested Schedule As needed, based on
Ма •	Ensure that contributing area and porous pavement surface are clear of debris (e.g., mulch,	
•	Ensure that contributing area and porous pavement surface are clear of debris (e.g., mulch, leaves, trash, etc.). Ensure that the contributing and adjacent area is stabilized and mowed, with clippings	As needed, based on

The local municipality encourages the use of the inspection checklist presented below for guidance in the inspection and maintenance of porous pavement. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the unit. Questions regarding inspection and maintenance should be referred to the local municipality.

INSPECTION CHECKLIST – POROUS PAVEMENT

_____ Owner Change since last inspection? Y N

Location:
Owner Name, Address, Phone:

Date: _____ Time: _____ Site conditions: _____

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Signs of clogging (e.g., standing water)?		
Debris (mulch, trash) accumulation?		
Sediment accumulation?		
Standing water?		
Erosion from underdrain (if present)?		
Exposed soil in areas discharging or adjacent to the porous pavement area?		
Runoff discharge from pavement area 24 to 48 hours after the end of a storm event?		
Other (describe)?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____ Inspector Name (printed)_____

4.3.12.7 Example Schematics

Figure 4-55. Typical Porous Pavement Applications (Photos by Bruce Ferguson, Don Wade)

4.3.12.8 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual, Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- City of Knoxville. *Knoxville Best Management Practices Manual.* City of Knoxville Stormwater Engineering Division, March 2003.
- Metropolitan Council. *Minnesota Urban Small Sites BMP Manual.* Metropolitan Council Services, St. Paul Minnesota, 2001.
- Urban Drainage and Flood Control District, Denver, Colorado. Urban Storm Drainage Criteria Manual Volume 3 Best Management Practices Stormwater Quality. 2004

4.3.12.9 Suggested Reading

- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- US EPA. Storm Water Technology Fact Sheet: Modular Treatment Systems. EPA 832-F-99-044, Office of Water, 1999.

This Page Left Intentionally Blank

4.4.1 Organic Filter

Limited Application Water Quality BMP

Description: The organic filter is a design variation of the surface sand filter that uses organic media to filter stormwater, as opposed to sand. An organic filter has two chambers. The first chamber is used for settling of heavy pollutant particles. The second chamber is filled with organic media and used to filter out fine particles.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum drainage area of 10 acres.
- Minimum head requirement of 5 to 8 feet.
- Requires the use of a peat/sand mixture as the filter media.
- Runoff discharges to an underdrain system.
- Intended for hotspot or space-limited applications, or for areas requiring enhanced pollutant removal capability.

ADVANTAGES / BENEFITS:

- Useful for treatment of small drainage areas and highly impervious areas.
- Good retrofit capability.

DISADVANTAGES / LIMITATIONS:

- High installation and maintenance burden.
- Not recommended for areas that have high sediment content in stormwater or clay/silt runoff areas.
- Possible odor problems.
- Should be installed after site construction is complete.

MAINTENANCE REQUIREMENTS:

- Inspect for clogging.
- Remove sediment from forebay/chamber.
- Replace filter media as needed.
- Stabilize, clean and maintain upstream drainage areas.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	*
Detention/Retention:	No

Accepts hotspot runoff: Yes, but two feet of separation distance required to water table when used in hotspot areas

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	High
Maintenance Burden:	High

LAND USE APPLICABILITY

Residential/Subdivision Use:	*
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:

80%

* in certain situations

4.4.1.1 General Description

The organic filter is a design variant of the <u>surface</u> sand filter, which uses organic materials such as leaf compost or a peat/sand mixture as the filter media. The organic material enhances pollutant removal by providing adsorption of contaminants such as soluble metals, hydrocarbons, and other organic chemicals.

As with the surface sand filter, an organic filter consists of a pretreatment chamber, and one or more filter cells. Each filter bed contains a layer of leaf compost or the peat/sand mixture, followed by filter fabric and a gravel/perforated pipe underdrain system. The filter bed and subsoils can be separated by an impermeable polyliner or concrete structure to prevent movement into groundwater.

Organic filters are typically used in high-density applications, or for areas requiring enhanced pollutant removal ability. Maintenance is typically higher than the surface sand filter facility due to the need to reduce the potential for debris and sediment clogging the organic filter. In addition, organic filter systems have a higher head requirement than sand filters.

4.4.1.2 Stormwater Management Suitability

Organic filter systems are designed primarily as <u>off-line</u> systems for treatment of the water quality volume. They are not useful for flood protection and will typically need to be used in conjunction with another structural BMP, such as a conventional detention basin that can provide downstream channel protection, overbank flood protection, and extreme flood protection. Further, organic filter facilities must provide flow diversion and/or be designed to safely pass extreme storm flows and protect the filter bed and facility. Under certain circumstances, organic filters can provide limited runoff quantity control, particularly for smaller storm events.

Water Quality (WQv)

In organic filter systems, stormwater pollutants are removed through a combination of gravitational settling, filtration and adsorption. The filtration process effectively removes suspended solids and particulates, biochemical oxygen demand (BOD), fecal coliform bacteria, and other pollutants. Organic filters with a grass cover have additional opportunities for bacterial decomposition as well as vegetation uptake of pollutants, particularly nutrients.

Channel Protection (CPv)

For smaller sites, an organic filter may be designed to capture the entire channel protection volume (CPv) in either an off- or on-line configuration. Given that an organic filter system is typically designed to completely drain over 40 hours, the channel protection design requirement for extended detention of the 1-year, 24-hour storm runoff volume can be met. For larger sites or where only the WQv is diverted to the organic filter facility, another structural control must be used to provide extended detention of the CPv.

4.4.1.3 Pollutant Removal Capabilities

Peat/sand filter systems provide good removal of bacteria and organic waste metals. The total suspended solids design pollutant removal rate of 80% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for organic filters, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.4.1.4 Application and Site Feasibility Criteria

Organic filter systems are well-suited for highly impervious areas where land available for structural BMPs is limited. Organic filters should primarily be considered for new construction or retrofit opportunities for commercial, industrial, and institutional areas where the sediment load is relatively low, such as: parking lots, driveways, loading docks, gas stations, garages, airport runways/taxiways, and storage yards. Organic filters may also be feasible and appropriate in some multi-family residential developments where maintenance is performed by a landscaping (or other suitably capable) company.

To avoid rapid clogging and failure of the filter media, the use of organic filters should be avoided in areas with less than 50% impervious cover, or high sediment yield sites with clay/silt soils.

The following basic criteria should be evaluated to ensure the suitability of an organic filter facility for meeting stormwater management objectives on a site or development.

General Feasibility

- Not generally suitable for use in a residential subdivision.
- Suitable for use in high density/ultra urban areas.
- Not suitable for use as a regional stormwater control. On-site applications are typically most feasible.

Physical Feasibility - Physical Constraints at Project Site

- Drainage Area Ten (10) acres maximum
- Space Required Function of available head at site
- <u>Minimum Head</u> The surface slope across the filter location should be no greater than 6%. The elevation difference needed at a site from the inflow to the outflow is 5 to 8 feet.
- <u>Minimum Depth to Water Table</u> If used on a site with an underlying water supply aquifer, a separation distance of 2 feet required between the bottom of the organic filter and the elevation of the seasonally high water table to prevent groundwater contamination.
- <u>Soils</u> Not recommended for drainage areas with exposed soil. Karst areas may require a liner.

Other Constraints / Considerations

• <u>Aquifer Protection</u> – Do not allow infiltration of filtered hotspot runoff into groundwater

4.4.1.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of organic filters. Organic filters that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. CONSTRUCTION SEQUENCING

- Ideally, the construction of an organic filter shall take place **after** the construction site has been stabilized.
- In the event that the organic filter is not constructed after site stabilization, care shall be taken during construction to minimize the risk of premature failure of the organic filter due to deposition of sediments from disturbed, unstabilized areas.
- Diversion berms and erosion prevention and sediment controls shall be maintained around an organic filter during all phases of construction. No runoff or sediment shall enter the organic filter area prior to completion of construction and the complete stabilization of construction areas.
- Organic filters shall not be used as a temporary sediment trap for construction activities.
- During and after excavation of the organic filter, all excavated materials shall be placed downstream, away from the organic filters, to prevent redeposit of the material during runoff events.

B. LOCATION AND SITING

 Organic filter systems are generally applied to land uses with a high percentage of impervious surfaces. Organic filters shall not be utilized for sites that have less than 50% impervious cover. Pretreatment must be provided as described in part E below, due to the potential for high clay/silt sediment loads that could result in clogging and failure of the filter bed. Any disturbed or denuded areas located within the area draining to and treated by the organic filter shall be stabilized prior to construction and use of the organic filter.

- It is preferred that organic filters only be used in an off-line configuration where the WQv (and CPv if used for this purpose) is diverted to the filter facility through the use of a flow diversion structure and flow splitter. Stormwater flows greater than the WQv (and CPv if used for this purpose) are then diverted to other controls or downstream using a diversion structure or flow splitter.
- Organic filter systems shall be designed for intermittent flow and must be allowed to drain and reaerate between rainfall events. They shall not be used on sites with a continuous flow from groundwater, sump pumps, or other sources.

C. GENERAL DESIGN

- An organic filter facility shall consist of a two-chamber open-air structure, which is located at groundlevel. The first chamber is the sediment forebay (commonly referred to as the sedimentation chamber) while the second chamber houses the filtration chamber (organic filter bed). Flow enters the sedimentation chamber where settling of larger sediment particles occurs. Runoff is then discharged from the sedimentation chamber through a perforated standpipe into the filtration chamber. After passing though the filter bed, runoff is collected by a perforated pipe and gravel underdrain system. Figure 4-58 provides a plan view and profile schematic of an organic filter.
- Organic filters can utilize a variety of organic materials as the filtering media. Two typical media bed configurations are the peat/sand filter and compost filter (see Figure 4-58). The peat filter includes an 18-inch 50/50 peat/sand mix over a 6-inch sand layer and can be optionally covered by 3 inches of topsoil and vegetation. The compost filter has an 18-inch compost layer.
- The type of peat used in a peat/sand filter is critically important. Fibric peat in which undecomposed fibrous organic material is readily identifiable is the preferred type. Hemic peat containing more decomposed material may also be used. Sapric peat made up of largely decomposed matter should *not* be used in an organic filter.

D. PHYSICAL SPECIFICATIONS / GEOMETRY

- The entire organic filter treatment system (including the sedimentation chamber) shall be designed to temporarily hold at least 75% of the WQv prior to filtration. Figure 4-56 illustrates the distribution of the treatment volume (0.75 WQv) among the various components of the surface sand filter, including:
 - \succ V_s volume within the sedimentation basin
 - \succ V_f volume within the voids in the filter bed
 - V_{f-temp} temporary volume stored above the filter bed
 - > A_s the surface area of the sedimentation basin
 - ➤ A_f surface area of the filter media
 - $h_{\rm s}$ height of water in the sedimentation basin
 - \rightarrow h_f average height of water above the filter media
 - \succ d_f depth of filter media

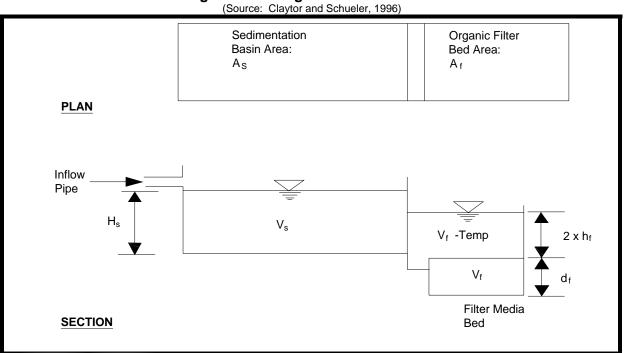
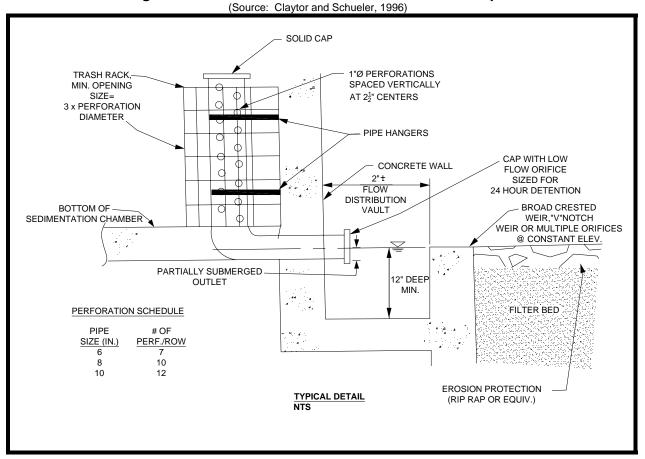


Figure 4-56. Organic Filter Volumes


- The sedimentation chamber shall be sized to hold at least 25% of the computed WQv and have a length-to-width ratio of at least 2:1. Inlet and outlet structures should be located at opposite ends of the chamber.
- The filter area shall be sized based on the principles of Darcy's Law. A coefficient of permeability (k) of 3.5 ft/day for sand, 2.0 ft/day for peat and 8.7 ft/day for leaf compost shall be used. The filter bed shall be designed to completely drain in 40 hours or less.
- The filter media for an organic filter shall consist of either an 18" layer of peat/sand mixture on top of a 6" sand layer or an 18" layer of leaf compost. Both types of media are placed on top of the underdrain system. Three inches of topsoil shall be placed over the sand bed. Permeable filter fabric shall be placed both above and below the filter bed to prevent clogging of the filter media and the underdrain system. Figure 4-58 illustrates a typical media cross section.
- The filter bed shall be equipped with a 6-inch perforated pipe underdrain (PVC AASHTO M 252, HDPE, or other suitable pipe material) in a gravel layer. The underdrain shall have a minimum grade of 1/8-inch per foot (1% slope). Holes shall be 3/8-inch diameter and spaced approximately 6 inches on center. Gravel shall be clean-washed aggregate with a maximum diameter of 3.5 inches and a minimum diameter of 1.5 inches with a void space of about 40%. Aggregate contaminated with soil shall not be used.
- The structure of the organic filter may be constructed of impermeable media such as concrete, or through the use of excavations and earthen embankments. When constructed with earthen walls/embankments, filter fabric shall be used to line the bottom and side slopes of the structures before installation of the underdrain system and filter media.

E. PRETREATMENT / INLETS

- Pretreatment of runoff in an organic filter system shall be by a sedimentation chamber, designed in accordance with the criteria stated above.
- Energy dissipators shall be used at the inlets to organic filters. Figure 4-57 shows a typical inlet pipe from the sedimentation basin to the filter media basin for the surface sand filter which can be also be utilized for an organic filter.

• The organic filter shall be designed such that runoff exits the sedimentation chamber at a non-erosive velocity.

Figure 4-57. Surface Sand Filter Perforated Stand-Pipe

F. OUTLET STRUCTURES

• An outlet pipe shall be provided from the underdrain system to the facility discharge. Due to the slow rate of filtration, outlet protection is generally unnecessary (except for emergency overflows and spillways). However, the design shall ensure that the discharges from the underdrain system occur in a non-erosive manner.

G. EMERGENCY SPILLWAY

 An emergency or bypass spillway must be included in the organic filter design to safely pass flows that exceed the WQv (and CPv if the filter is utilized for channel protection purposes). The spillway prevents filter water levels from overtopping the embankment and causing structural damage. The emergency spillway shall be located so that embankments, downstream buildings and structures will not be impacted by spillway discharges.

H. MAINTENANCE ACCESS

A minimum 20' wide maintenance right-of-way or drainage easement shall be provided for the organic filter from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. Adequate access must be provided to the filter bed. Facility designs must enable maintenance personnel to easily remove and replace upper layers of the filter media.

I. SAFETY FEATURES

- Where necessary, surface organic filter facilities can be fenced to prevent access.
- Inlets and outlets shall be designed and maintained so as not to permit access by children.

J. LANDSCAPING

• Organic filters can be designed with a grass cover to aid in pollutant removal and prevent clogging. The grass should be capable of withstanding frequent periods of inundation and drought.

K. ADDITIONAL SITE-SPECIFIC DESIGN CRITERIA AND ISSUES

Physiographic Factors - Local terrain design constraints

- Low Relief Use of an organic filter may be limited by low head
- High Relief Filter bed surface must be level
- <u>Karst</u> Use liner or impermeable membrane to seal bottom earthen surface of the organic filter or use watertight structure

Special Downstream Watershed Considerations

 <u>Wellhead Protection</u> – Reduce potential groundwater contamination (in required wellhead protection areas) by preventing infiltration of hotspot runoff. May require liner for type "A" and "B" soils; Pretreat hotspots; provide 2 to 4 foot separation distance from water table.

4.4.1.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate WQv and CPv in accordance with the guidance presented in Chapter 3. Consult local regulations for peak discharge control (i.e., detention) requirements.

Step 2. Determine if the development site and conditions are appropriate for the use of organic filter.

Consider the subsections 4.4.1.4 and 4.4.1.5.K. Check with Northeast Tennessee Regional Stormwater Planning Group and other agencies as appropriate to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 3. Compute WQv peak discharge (Qwg)

The peak rate of discharge for water quality design storm is needed for sizing of off-line diversion structures (see Chapter 3 for more information on this calculation).

- (a) Using WQv, compute CN
- (b) Compute time of concentration using TR-55 method
- (c) Determine appropriate unit peak discharge from time of concentration
- (d) Compute Q_{wq} (in inches) from unit peak discharge, drainage area, and WQv

Step 4. Size flow diversion structure, if needed

A flow regulator (or flow splitter diversion structure) should be supplied to divert the WQv to the organic filter facility. Size low flow orifice, weir, or other device to pass Q_{wq}. Step 5. Size filtration basin chamber

The filter area is sized using the following equation (based on Darcy's Law):

 $A_{f} = (WQv) (d_{f}) / [(k) (h_{f} + d_{f}) (t_{f})]$

where:

WQv = water quality volume (ft³)

 A_f = surface area of filter bed (ft²)

 d_f = filter bed depth

(at least 1.5 feet, no more than 2 feet)
k = coefficient of permeability of filter media (ft/day)
(use 3.5 ft/day for sand)
(use 2.0 ft/day for peat)
(use 8.7 ft/day for leaf compost)
h_f = average height of water above filter bed (ft)
(1/2 h _{max} , which varies based on site but h _{max} is typically \leq 6 feet)
t_f = design filter bed drain time (days)
(1.67 days or 40 hours is required maximum time)

Set preliminary dimensions of filtration basin chamber.

Step 6. Size sedimentation chamber

The sedimentation chamber shall be sized to at least 25% of the computed WQv and have a length-to-width ratio of 2:1. The Camp-Hazen equation is used to compute the required surface area:

$$A_s = -(Q_o/w) * Ln (1-E)$$

where:

 A_s = sedimentation basin surface area (ft²)

- Q_o = rate of outflow = the WQv (ft³) / 86400 seconds
- w = particle settling velocity (ft/sec)

E = trap efficiency

Assuming:

- 90% sediment trap efficiency (0.9)
- particle settling velocity (ft/sec) = 0.0033 ft/sec for imperviousness (I) $\ge 75\%$
- particle settling velocity (ft/sec) = 0.0004 ft/sec for imperviousness (I) < 75%
- average of 24 hour holding period

Then:

$$A_s$$
 = (0.0081) (WQv) ft² for l ≥ 75%
 A_s = (0.066) (WQv) ft² for l < 75%

Set preliminary dimensions of sedimentation chamber.

Step 7. Compute V_{min}

Step 8. Compute storage volumes within entire facility and sedimentation chamber orifice size

Use the following equation:

$$V_{min} = 0.75 WQv = V_s + V_f + V_{f-temp}$$

- (1) Compute V_f = water volume within filter bed/gravel/pipe = $A_f * d_f * n$ Where: n = porosity = 0.4 for most applications
- (2) Compute V_{f-temp} = temporary storage volume above the filter bed = 2 * h_f * A_f
- (3) Compute V_s = volume within sediment chamber = V_{min} V_f V_{f-temp}
- (4) Compute h_s = height in sedimentation chamber = V_s/A_s
- (5) Ensure h_s and h_f fit available head and other dimensions still fit change as necessary in design iterations until all site dimensions fit.
- (6) Size orifice from sediment chamber to filter chamber to release Vs within 24-hours at average

release rate with $0.5 h_s$ as average head.

- (7) Design outlet structure with perforations allowing for a safety factor of 10.
- (8) Size distribution chamber to spread flow over filtration media level spreader weir or orifices.

Step 9. Design inlets, pretreatment facilities, underdrain system, and outlet structures

See design criteria above for more details.

Step 10. Compute overflow weir sizes

- 1. Size overflow weir at elevation h_s in sedimentation chamber (above perforated stand pipe) to handle surcharge of flow through filter system from 25-year storm.
- Plan inlet protection for overflow from sedimentation chamber and size overflow weir at elevation h_f in filtration chamber (above perforated stand pipe) to handle surcharge of flow through filter system from 25-year storm (see example).

This page left intentionally blank

4.4.1.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.4.1.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of an organic filter as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for organic filters, along with a suggested frequency for each activity. Individual organic filters may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the organic filter in proper operating condition at all times.

Insp	ection Activities	Suggested Schedule	
•	A record should be kept of the dewatering time (i.e., the time required to drain the filter bed completely after a storm event) for an organic filter to determine if maintenance is necessary. The filter bed should drain completely in about 40 hours after the end of the rainfall.	After Rain Events	
•	Check to ensure that the filter surface does not clog after storm events.		
•	Check the contributing drainage area, facility, inlets and outlets for debris.	Monthly	
•	Check to ensure that the filter surface is not clogging.		
•	Check to see that the filter bed is clean of sediment and the sediment chamber is not more than 50% full of sediment or the sediment accumulation is not more than 6 inches, whichever is less sediment. Remove sediment as necessary.		
•	Make sure that there is no evidence of deterioration, spalling, bulging, or cracking of concrete.		
•	Inspect inlets, outlets and overflow spillway to ensure good condition and no evidence of erosion.	Annually	
•	Check to see if stormwater flow is bypassing the facility.		
•	Ensure that no noticeable odors are detected outside the facility.		
• Mai	Ensure that no noticeable odors are detected outside the facility.	Suggested Schedule	
• Mair	·		
	Antenance Activities Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the organic	Suggested Schedule	
	Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the organic filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the	Monthly	
	Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the organic filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. Check to see that the filter bed is clean of sediment and the sediment chamber is not more than 50% full of sediment or the sediment accumulation is not more than 6 inches, whichever		
	Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the organic filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. Check to see that the filter bed is clean of sediment and the sediment chamber is not more than 50% full of sediment or the sediment accumulation is not more than 6 inches, whichever is less sediment. Remove sediment as necessary.	Monthly	
	Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the organic filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. Check to see that the filter bed is clean of sediment and the sediment chamber is not more than 50% full of sediment or the sediment accumulation is not more than 6 inches, whichever is less sediment. Remove sediment as necessary. Repair or replace any damaged structural parts.	Monthly	

The Northeast Tennessee Regional Stormwater Planning Group encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of organic filters. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the organic filter. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality of the Northeast Tennessee Regional Stormwater Planning Group.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) ORGANIC FILTER INSPECTION CHECKLIST

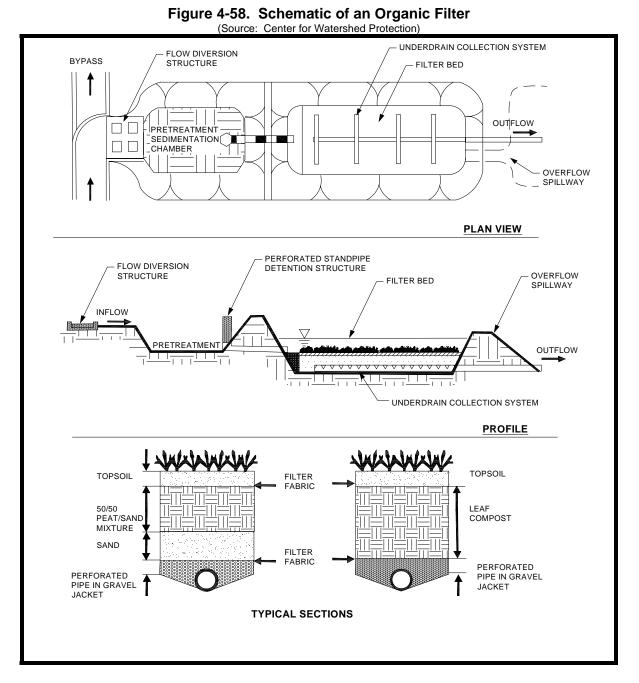
Location:	

_____Owner Change since last inspection? Y N

Owner Name, Address, Phone: _____

Date: _____ Time: _____ Site conditions: _____

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Organic Filter Inspection List		
Complete drainage of the filter in about 40 hours after a rain event?		
Clogging of filter surface?		
Clogging of inlet/outlet structures?		
Clogging of filter fabric?		
Filter clear of debris and functional?		
Leaks or seeps in filter?		
Obstructions of spillway(s)?		
Animal burrows in filter?		
Sediment accumulation in filter bed (less than 50% is acceptable)?		
Cracking, spalling, bulging or deterioration of concrete?		
Erosion in area draining to organic filter?		
Erosion around inlets, filter bed, or outlets?		
Pipes and other structures in good condition?		
Undesirable vegetation growth?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		


If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____ Inspector Name (printed)_____

4.4.1.8 Example Schematic

4.4.1.9 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual, Volume 4 Best Management Practices. 2006.

Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.

- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP). 2000.
- Minnesota Pollution Control Agency. *Minnesota Stormwater Manual.* Accessed January 2006. <u>http://www.pca.state.mn.us/water/stormwater/stormwater-manual.html</u>

Washington State Department of Ecology. Stormwater Management Manual for Western Washington. 2000.

4.4.1.10 Suggested Reading

- Bell, W., L. Stokes, L.J. Gavan, and T. Nguyen. Assessment of the Pollutant Removal Efficiencies of Delaware Sand Filter BMPs. City of Alexandria, Department of Transportation and Environmental Services, Alexandria, VA, 1995.
- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks. 1993.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures.* Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- Horner, R.R., and C.R. Horner. *Design, Construction, and Evaluation of a Sand Filter Stormwater Treatment System, Part II: Performance Monitoring.* Report to Alaska Marine Lines, Seattle, WA, 1995.
- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.
- Northern Virginia Regional Commission (NVRC). *The Northern Virginia BMP Handbook.* Annandale, VA, 1992.
- Schueler, T.R. Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques 1(2):47-54, 1994.
- US EPA. Storm Water Technology Fact Sheet: Sand Filters. EPA 832-F-99-007, Office of Water. 1999.
- Young, G.K., S. Stein, P. Cole, T. Kammer, F. Graziano, and F. Bank. *Evaluation and Management of Highway Runoff Water Quality.* FHWA-PD-96-032. Federal Highway Administration, Office of Environment and Planning, 1996.

4.4.2 Underground Sand Filter

Limited Application Water Quality BMP

Description: The underground sand filter is a design variation of the surface sand filter, where the sand filter chambers and media are located in an underground vault.

KEY DESIGN CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum contributing drainage area of 2 acres
- Typically requires 2 to 6 feet of head
- Precast concrete shells available, which decrease construction costs
- Underdrain required

ADVANTAGES / BENEFITS:

- High pollutant removal
- Applicable to small drainage areas
- Good for highly impervious areas
- Good retrofit capability

DISADVANTAGES / LIMITATIONS:

- High maintenance burden
- Not recommended for areas with high sediment content in stormwater or clay/silt runoff areas
- Possible odor problems
- Should be installed after site construction is complete

MAINTENANCE REQUIREMENTS:

- Inspect for clogging rake first inch of sand
- Remove sediment from forebay/chamber
- Replace sand filter media as needed

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	*
Detention/Retention:	No

Accepts hotspot runoff: Yes, but requires impermeable liner and two feet of separation distance to water table when used in hotspot areas.

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	High
Maintenance Burden:	High

LAND USE APPLICABILITY

Residential/Subdivision Use:	No
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids:

80%

* in certain situations

4.4.2.1 General Description

The underground sand filter is a design variant of the surface sand filter. The underground sand filter is an enclosed filter system typically constructed just below grade in a vault along the edge of an impervious area such as a parking lot. The system consists of a sedimentation chamber and a sand bed filter. Runoff flows into the structure through a series of inlet grates located along the top of the control. Underground sand filters are best used for high-density land uses or ultra-urban applications where space for surface stormwater controls is limited. Figure 4-59 presents an example of an underground sand filter.

Multiple configurations have been developed for underground filters including the DC filter and the Delaware filter. The DC filter is intended to treat stormwater that is conveyed by a storm drain system. The Delaware filter (also known as the perimeter sand filter) is designed to collect flow directly from impervious surfaces and is well suited for installation along parking areas. Both systems operate in the same manner.

The underground sand filter is a three-chamber system. The initial chamber is a sedimentation (pretreatment) chamber that temporarily stores runoff and utilizes a wet pool to capture sediment. The sedimentation chamber is connected to the sand filter chamber by a submerged wall that protects the filter bed from oil and trash. The filter bed is 18 to 24 inches deep and may have a protective screen of gravel or permeable geotextile to limit clogging. The sand filter chamber also includes an underdrain system with inspection and clean out wells. Perforated drain pipes under the sand filter bed extend into a third chamber that collects filtered runoff. Flows beyond the filter capacity are diverted through an overflow weir.

Due to its location below the surface, underground sand filters have a high maintenance burden and should only be used where adequate inspection and maintenance can be ensured.

4.4.2.2 Stormwater Management Suitability

Underground sand filter systems are designed primarily as <u>off-line</u> systems for treatment of the water quality volume. They are not useful for flood protection and will typically need to be used in conjunction with another

structural BMP, such as a conventional detention basin that can provide downstream channel protection, overbank flood protection, and extreme flood protection. Further, underground sand filter facilities utilized online must provide flow diversion and/or be designed to safely pass extreme storm flows and protect the filter bed and facility. Under certain circumstances, underground sand filters can provide limited runoff quantity control, particularly for smaller storm events.

Water Quality (WQv)

In underground sand filter systems, stormwater pollutants are removed through a combination of gravitational settling, filtration and adsorption. The filtration process effectively removes suspended solids and particulates, biochemical oxygen demand (BOD), fecal coliform bacteria, and other pollutants.

Channel Protection (CPv)

For smaller sites, an underground sand filter may be designed to capture the entire channel protection volume (CPv) in either an off- or on-line configuration. Given that an underground sand filter system is typically designed to completely drain over 40 hours, the channel protection design requirement for extended detention of the 1-year, 24-hour storm runoff volume can be met. For larger sites or where only the WQv is diverted to the underground sand filter facility, another structural control must be used to provide extended detention of the CPv.

4.4.2.3 Pollutant Removal Capabilities

Underground sand filters are presumed to be able to remove 80% of the total suspended solids (TSS) load in typical urban post-development runoff when sized, designed, constructed and maintained in accordance with the recommended specifications. Undersized or poorly designed underground sand filters can reduce TSS removal performance.

Additionally, research has shown that use of underground sand filters will have benefits beyond the removal of TSS, such as the removal of other pollutants (i.e. phosphorous, nitrogen, fecal coliform and heavy metals), as well, which is useful information should the pollutant removal criteria change in the future. The following design pollutant removal rates are conservative average pollutant reduction percentages for design purposes derived from sampling data.

For additional information and data on pollutant removal capabilities for underground sand filters, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.4.2.4 Application and Site Feasibility Criteria

Underground sand filter systems are well-suited for highly impervious areas where land available for structural BMPs is limited. Underground sand filters should primarily be considered for new construction or retrofit opportunities for commercial, industrial, and institutional areas where the sediment load is relatively low, such as: parking lots, driveways, loading docks, gas stations, garages, airport runways/taxiways, and storage yards.

To avoid rapid clogging and failure of the filter media, the use of underground sand filters should be avoided in areas with less than 50% impervious cover, or high sediment yield sites with clay/silt soils.

The following basic criteria should be evaluated to ensure the suitability of an underground sand filter facility for meeting stormwater management objectives on a site or development.

General Feasibility

- Not suitable for use in a residential subdivision
- Suitable for use in high density/ultra-urban areas
- Not suitable for use as a regional stormwater control. On-site applications are typically most feasible.

Physical Feasibility - Physical Constraints at Project Site

• <u>Drainage Area</u> – 2 acres maximum for an underground sand filter

- Space Required Function of available head at site
- <u>Minimum Head</u> The surface slope across the filter location should be no greater than 6%. The elevation difference needed at a site from the inflow to the outflow is 2-6 feet.
- <u>Minimum Depth to Water Table</u> If used on a site with an underlying water supply aquifer, a separation distance of 2 feet is required between the bottom of the sand filter and the elevation of the seasonally high water table to prevent groundwater contamination.
- <u>Soils</u> Not recommended for clay/silt drainage areas that are not stabilized.

Other Constraints / Considerations

• <u>Aquifer Protection</u> – Do not allow infiltration of filtered hotspot runoff into groundwater

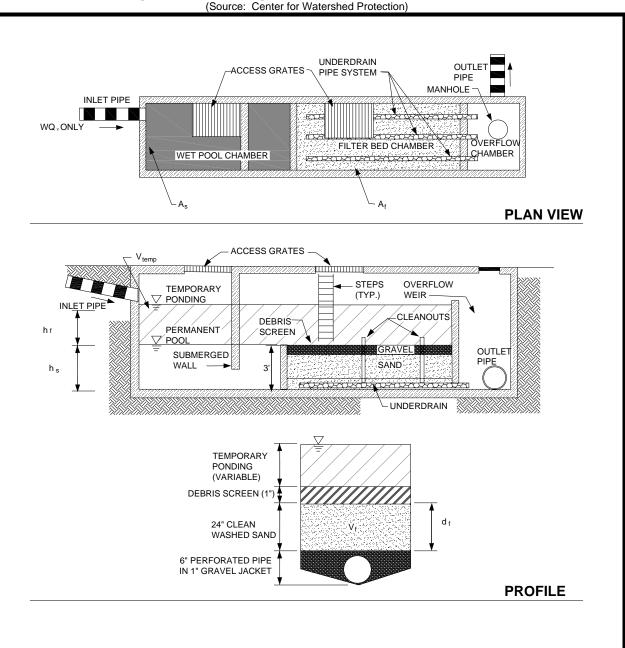
4.4.2.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of underground sand filters. Underground sand filters that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. CONSTRUCTION SEQUENCING

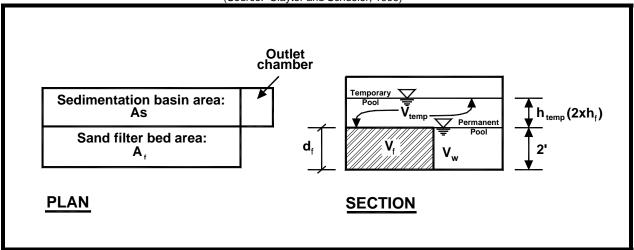
- Ideally, the construction of an underground filter shall take place **after** the construction site has been stabilized.
- In the event that the underground sand filter is not constructed after site stabilization, care shall be taken during construction to minimize the risk of premature failure of the organic filter due to deposition of sediments from disturbed, unstabilized areas.
- Diversion berms and erosion prevention and sediment controls shall be maintained around the filter during all phases of construction. No runoff or sediment shall enter the sand filter area prior to completion of construction and the complete stabilization of construction areas.
- Underground sand filters shall not be used as a temporary sediment trap for construction activities.
- During and after excavation of the underground sand filter area, all excavated materials shall be placed downstream, away from the sand filter, to prevent redeposit of the material during runoff events.

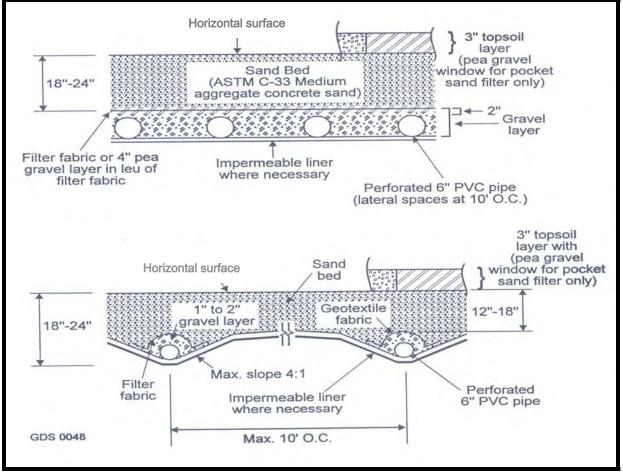
B. LOCATION AND SITING


- Underground sand filter systems are generally applied to land uses with a high percentage of impervious surfaces. Sand filters shall not be utilized for sites that have less than 50% impervious cover. Any disturbed or denuded areas located within the area draining to and treated by the underground sand filter shall be stabilized prior to construction and use of the sand filter.
- Delaware underground sand filters are typically sited along the edge, or perimeter, of an impervious area such as a parking lot.
- DC underground sand filters are installed within the storm drain system.
- Underground sand filter systems shall be designed for intermittent flow and must be allowed to drain and re-aerate between rainfall events. They shall not be used on sites with a continuous flow from groundwater, sump pumps, or other sources.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

- The entire treatment system (including the sedimentation chamber) must temporarily hold at least 75% of the WQv prior to filtration. Figures 4-60 and 4-61 illustrate the distribution of the treatment volume (0.75 WQv) among the various components of the underground sand filters, including:
 - \succ V_w wet pool volume within the sedimentation basin
 - \succ V_f volume within the voids in the filter bed


- V_{temp} temporary volume stored above the filter bed
- > A_s the surface area of the sedimentation basin
- ➤ A_f surface area of the filter media
- h_f average height of water above the filter media (1/2 h_{temp})
- d_f depth of filter media
- The sedimentation chamber shall be sized to at least 50% of the computed WQv.
- The filter area shall be sized based on the principles of Darcy's Law. A coefficient of permeability (k) of 3.5 ft/day for sand shall be used. The filter bed shall be designed to completely drain in 40 hours or less.
- The filter media shall consist of an 18-inch to 24-inch layer of clean washed medium aggregate concrete sand (ASTM C-33) on top of the underdrain system. Figure 4-62 illustrates a typical media cross section.
- The filter bed shall be equipped with a 6-inch perforated pipe underdrain (PVC AASHTO M 252, HDPE, or other suitable pipe material) in a gravel layer. The underdrain shall have a minimum grade of 1/8-inch per foot (1% slope). Holes shall be 3/8-inch diameter and spaced approximately 6 inches on center. Gravel shall be clean-washed aggregate with a maximum diameter of 3.5 inches and a minimum diameter of 1.5 inches with a void space of about 40%. Aggregate contaminated with soil shall not be used.



D. OUTLET STRUCTURES

• An outlet pipe shall be provided from the underdrain system to the facility discharge. Due to the slow rate of filtration, outlet protection is generally unnecessary (except for emergency overflows and spillways). However, the design shall ensure that the discharges from the underdrain system occur in a non-erosive manner.

E. EMERGENCY SPILLWAY

• An emergency bypass spillway or weir must be included in the underground sand filter design to safely pass flows that exceed the WQv (and CPv if the filter is utilized for channel protection purposes

F. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right-of-way or drainage easement shall be provided for an underground sand filter from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. Adequate access must be provided to the grates of the filter bed. Facility designs must enable maintenance personnel to easily remove and replace upper layers of the filter media.

G. SAFETY FEATURES

• Inlets, access grates and outlets shall be designed and maintained so as not to permit access by children. Inlet and access grates to the underground sand filters may be locked.

4.4.2.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate WQv, CPv in accordance with the guidance presented in Chapter 3.

<u>Step 2.</u> Determine if the development site and conditions are appropriate for the use of an underground sand filter.

Consider the subsection 4.4.2.4. Check with Northeast Tennessee Stormwater Planning Group and other agencies as appropriate to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply.

Step 3. Compute WQv peak discharge (Qwg)

The peak rate of discharge for water quality design storm is needed for sizing of off-line diversion structures (see Chapter 3 for more information on this calculation).

- (a) Using WQv, compute CN
- (b) Compute time of concentration using TR-55 method
- (c) Determine appropriate unit peak discharge from time of concentration
- (d) Compute Q_{wq} in inches from unit peak discharge, drainage area, and WQv.

Step 4. Size flow diversion structure, (if needed)

If a diversion structure is utilized, a flow regulator should be supplied to divert the WQv to the underground sand filter facility. Size low flow orifice, weir, or other device to pass Q_{wq} .

Step 5. Size filtration basin chamber

The filter area is sized using the following equation (based on Darcy's Law):

$$A_{f} = (WQv) (d_{f}) / [(k) (h_{f} + d_{f}) (t_{f})]$$

where:

 A_f = surface area of filter bed (ft²)

tf

WQv = water quality volume (ft³)

- d_f = filter bed depth (1.5 ft)
- (at least 18 inches, no more than 24 inches) k
 - = coefficient of permeability of filter media (ft/day)
 - (use 3.5 ft/day for sand)
- = average height of water above filter bed (ft) h
 - (1/2 h_{max} , which varies based on site but h_{max} is typically \leq 6 feet)
 - = design filter bed drain time (days)

(1.67 days or 40 hours is required maximum time)

Set preliminary dimensions of filtration basin chamber.

Step 6. Size sedimentation chamber

Depending on the type of underground sand filter system utilized, the sedimentation chamber shall be sized to at least 50% of the computed WQv and have a length-to-width ratio of 2:1. The Camp-Hazen equation is used to compute the required surface area:

$$A_s = -(Q_o/w) * Ln (1-E)$$

where:

- A_s = sedimentation basin surface area (ft²)
- Q_o = rate of outflow = the WQv (ft³) / 86400 seconds
- w = particle settling velocity (ft/sec)

E = trap efficiency

Assuming:

- 90% sediment trap efficiency (0.9)
- particle settling velocity (ft/sec) = 0.0033 ft/sec for imperviousness $\geq 75\%$
- particle settling velocity (ft/sec) = 0.0004 ft/sec for imperviousness < 75%
- average of 24 hour holding period

Then:

$$\begin{array}{rcl} {\sf A}_{s} &=& (0.0081) \; ({\sf WQv}) \; {\sf ft}^{2} \; {\sf for} \; {\sf I} \geq 75\% \\ {\sf A}_{s} &=& (0.066) \; ({\sf WQv}) \; {\sf ft}^{2} \; {\sf for} \; {\sf I} < 75\% \end{array}$$

Set preliminary dimensions of sedimentation chamber.

Step 7. Compute V_{min}

Step 8. Compute storage volumes within entire facility and sedimentation chamber orifice size

Underground (D.C.) sand filter:

$$V_{min} = 0.75 WQv = V_s + V_f + V_{f-temp}$$

- Compute V_f = water volume within filter bed/gravel/pipe = $A_f * d_f * n$ (1)Where: n = porosity = 0.4 for most applications
- Compute $V_{f.temp}$ = temporary storage volume above the filter bed = 2 * h_f * A_f (2)
- (3) Compute V_s = volume within sediment chamber = V_{min} - V_f - V_{f-temp}
- Compute h_s = height in sedimentation chamber = V_s/A_s (4)
- (5) Ensure h_s and h_f fit available head and other dimensions still fit – change as necessary in design iterations until all site dimensions fit.

- (6) Size orifice from sediment chamber to filter chamber to release V_s within 24-hours at average release rate with 0.5 h_s as average head.
- (7) Design outlet structure with perforations allowing for a safety factor of safety times the orifice capacity.
- (8) Size distribution chamber to spread flow over filtration media level spreader weir or orifices.

Underground perimeter (Delaware) sand filter:

(1) Compute V_f = water volume within filter bed/gravel/pipe = A_f * d_f * n where: A_f = surface area of filter bed (ft²) d_f = filter bed depth (1.5 ft) (at least 18 inches, no more than 24 inches)

- n = porosity = 0.4 for most applications
- (2) Compute V_w = wet pool storage volume $A_s * 2$ feet minimum
- (3) Compute V_{temp} = temporary storage volume = $V_{min} (V_f + V_w)$
- (4) Compute h_{temp} = temporary storage height = V_{temp} / (A_f + A_s)
- (5) Ensure $h_{temp} \ge 2 * h_f$, otherwise decrease h_f and re-compute. Ensure dimensions fit available head and area change as necessary in design iterations until all site dimensions fit.
- (6) Size distribution slots from sediment chamber to filter chamber.

Step 9. Design inlets, underdrain system, and outlet structures

See design criteria above for more details.

Step 10. Compute overflow weir sizes

Underground (D.C.) sand filter:

$$V_{min} = 0.75 WQv = V_s + V_f + V_{f-temp}$$

- Compute V_f = water volume within filter bed/gravel/pipe = A_f * d_f * n where: n = porosity = 0.4 for most applications
- (2) Compute V_{f-temp} = temporary storage volume above the filter bed = 2 * h_f * A_f
- (3) Compute V_s = volume within sediment chamber = $V_{min} V_f V_{f-temp}$
- (4) Compute hs = height in sedimentation chamber = Vs/As
- (5) Ensure hs and hf fit available head and other dimensions still fit change as necessary in design iterations until all site dimensions fit.
- (6) Size orifice from sediment chamber to filter chamber to release Vs within 24-hours at average release rate with 0.5 hs as average head.
- (7) Design outlet structure with perforations allowing for a safety factor of times the orifice capacity.
- (8) Size distribution chamber to spread flow over filtration media level spreader weir or orifices.

Underground perimeter (Delaware) sand filter: Size overflow weir at end of sedimentation chamber to handle excess inflow, set at WQv elevation.

4.4.2.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.4.2.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of an underground sand filter as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for underground sand filters, along with a suggested frequency for each activity. Individual filters may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the sand filter in proper operating condition at all times.

Insp	ection Activities	Suggested Schedule	
•	A record should be kept of the dewatering time (i.e., the time required to drain the filter bed completely after a storm event) for a sand filter to determine if maintenance is necessary. The filter bed should drain completely in about 40 hours after the end of the rainfall.	After Rain Events	
	Check to ensure that the filter surface does not clog after storm events.		
•	Check the contributing drainage area, facility, inlets and outlets for debris.	Marstell	
•	Check to ensure that the filter surface is not clogging.	Monthly	
•	Check to see that the filter bed is clean of sediment, and the sediment chamber is not more than 50% full or 6 inches, whichever is less, of sediment. Remove sediment as necessary.		
	Make sure that there is no evidence of deterioration, spalling, bulging, or cracking of concrete.		
•	Inspect grates of sand filter (perimeter and Delaware).	Appuollu	
•	Inspect inlets, outlets and overflow spillway to ensure good condition and no evidence of erosion.	Annually	
	Check to see if stormwater flow is bypassing the facility (if so designed).		
	Ensure that no noticeable odors are detected outside the facility.		
lai	Ensure that no noticeable odors are detected outside the facility.	Suggested Schedule	
	,	Suggested Schedule	
	ntenance Activities Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the	Suggested Schedule	
	Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the underground sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the		
	Intenance Activities Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the underground sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter and Delaware).in sand filter, ensure that the	Monthly	
	Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the underground sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter and Delaware).in sand filter, ensure that the chamber does not leak, and normal pool level is retained. Check to see that the filter bed is clean of sediment, and the sediment chamber is not more		
Main A	Intenance Activities Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the underground sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter and Delaware).in sand filter, ensure that the chamber does not leak, and normal pool level is retained. Check to see that the filter bed is clean of sediment, and the sediment chamber is not more than 50% full or 6 inches, whichever is less, of sediment. Remove sediment as necessary.	Monthly	
	Intenance Activities Mow and stabilize (prevent erosion, vegetate denuded areas) the area draining to the underground sand filter. Collect and remove grass clippings. Remove trash and debris. Ensure that activities in the drainage area minimize oil/grease and sediment entry to the system. If permanent water level is present (perimeter and Delaware).in sand filter, ensure that the chamber does not leak, and normal pool level is retained. Check to see that the filter bed is clean of sediment, and the sediment chamber is not more than 50% full or 6 inches, whichever is less, of sediment. Remove sediment as necessary. Repair or replace any damaged structural parts.	Monthly	

The Northeast Tennessee Regional Stormwater Planning Group encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of underground sand filters. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the underground sand filter. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality of the Northeast Tennessee Regional Stormwater Planning Group.

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) UNDERGROUND SAND FILTER INSPECTION CHECKLIST

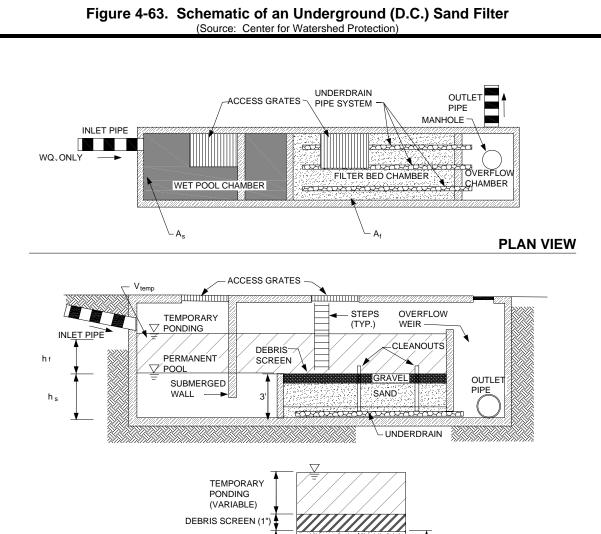
ocation:	

_____ Owner Change since last inspection? Y N

Owner Name, Address, Phone: _____

Date: _____ Time: _____ Site conditions:_____

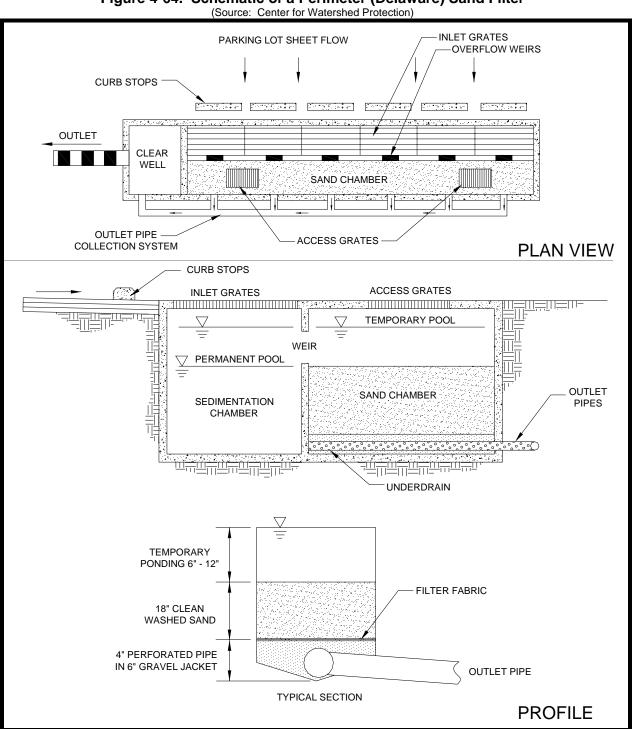
Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Underground Sand Filter Inspection List		
Complete drainage of the filter in about 40 hours after a rain event?		
Clogging of filter surface?		
Clogging of inlet/outlet structures?		
Clogging of filter fabric?		
Filter clear of debris and functional?		
Leaks or seeps in filter?		
Obstructions of spillway(s)?		
Animal burrows in filter?		
Sediment accumulation in filter bed (less than 50% is acceptable)?		
Cracking, spalling, bulging or deterioration of concrete?		
Erosion in area draining to sand filter?		
Erosion around inlets, filter bed, or outlets?		
Pipes and other structures in good condition?		
Undesirable vegetation growth?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		


If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____ Inspector Name (printed)_____

4.4.2.8 Example Schematics


24" CLEAN WASHED SAND

6" PERFORATED PIPE IN 1" GRAVEL JACKET d f

PROFILE

City of Kingsport Stormwater Management Manual

4.4.2.9 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Brown, W., and T. Schueler. *The Economics of Stormwater BMPs in the Mid-Atlantic Region.* Prepared for Chesapeake Research Consortium, Edgewater, MD, by the Center for Watershed Protection, Ellicott City, MD, 1997.
- Center for Watershed Protection (CWP). *Design of Stormwater Filtering Systems.* Prepared for the Chesapeake Research Consortium, Solomons, MD, and U.S. EPA Region 5, Chicago, IL, by the Center for Watershed Protection, Ellicott City, MD, 1996.
- Center for Watershed Protection (CWP). *Multi-Chamber Treatment Train developed for stormwater hot spots.* Watershed Protection Techniques 2(3):445-449, 1997.
- Maryland Department of the Environment (MDE). *Maryland Stormwater Design Manual*. 2000. Available at: <u>http://www.mde.state.md.us/programs/waterprograms/sedimentandstormwater/stormwater_design/index.asp</u>.
- Minnesota Pollution Control Agency. *Minnesota Stormwater Manual.* Accessed January 2006. <u>http://www.pca.state.mn.us/water/stormwater/stormwater-manual.html</u>
- New Jersey Department of Environmental Protection. *Stormwater Best Management Practices Manual.* 2004.
- Schueler, T. Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques 1(2):47-54, 1994.

StormwaterAuthority.com. Sand and Organic Filters. Accessed January 2006. www.stormwaterauthority.com

4.4.2.10 Suggested Reading

- Bell, W., L. Stokes, L.J. Gavan, and T. Nguyen. Assessment of the Pollutant Removal Efficiencies of Delaware Sand Filter BMPs. City of Alexandria, Department of Transportation and Environmental Services, Alexandria, VA, 1995.
- California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks, 1993.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. *Guidance Manual for On-Site Stormwater Quality Control Measures*. Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- Horner, R.R., and C.R. Horner. Design, Construction, and Evaluation of a Sand Filter Stormwater Treatment System. Part II: Performance Monitoring. Report to Alaska Marine Lines, Seattle, WA, 1995.

- Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone, March, 1992.
- Northern Virginia Regional Commission (NVRC). *The Northern Virginia BMP Handbook.* Annandale, VA, 1992.
- US EPA. Storm Water Technology Fact Sheet: Sand Filters. EPA 832-F-99-007, Office of Water, 1999.
- Young, G.K., S. Stein, P. Cole, T. Kammer, F. Graziano, and F. Bank. *Evaluation and Management of Highway Runoff Water Quality.* FHWA-PD-96-032, Federal Highway Administration, Office of Environment and Planning, 1996.

4.4.3 Submerged Gravel Wetland

Limited Application Water Quality BMP

Description: Submerged gravel wetlands are one or more cells filled with crushed rock designed to support wetland plants. Stormwater flows subsurface through the root zone of the constructed wetland where pollutant removal takes place.

KEY DESIGN CONSIDERATIONS

DESIGN GUIDELINES:

- Intended for space-limited applications
- High removal rates for sediment, Biochemical Oxygen Demand, and fecal coliform bacteria
- Max drainage area \leq 5 acres

ADVANTAGES / BENEFITS:

- High TSS removal
- Generally requires low land consumption, and can fit within an area that is typically devoted to landscaping
- High pollutant removal capabilities are expected; however, limited performance data exist
- Can be located in low-permeability soils with a high water table

DISADVANTAGES / LIMITATIONS:

- High maintenance burden
- Not recommended for areas with high sediment content in stormwater or clay/silt runoff areas
- Should be installed after site construction is complete

MAINTENANCE REQUIREMENTS:

• Periodic sediment removal required to prevent clogging of gravel base

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: Yes, but requires an impermeable liner and two feet of separation distance to water table when used in hotspot areas.

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	High
Maintenance Burden:	High

LAND USE APPLICABILITY

Residential/Subdivision Use:	No
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids: 80%

4.4.3.1 General Description

The submerged gravel wetland system consists of one or more treatment cells that are filled with crushed rock or gravel and is designed to allow stormwater to flow subsurface through the root zone of the constructed wetland. The outlet from each cell is set at an elevation to keep the rock or gravel submerged. Wetland plants are rooted in the media, where they can directly take up pollutants. In addition, algae and microbes thrive on the surface area of the rocks. In particular, the anaerobic conditions on the bottom of the filter can foster the denitrification process. Although widely used for wastewater treatment in recent years, only a handful of submerged gravel wetland systems have been designed to treat stormwater. Mimicking the pollutant removal ability of nature, this structural control relies on the pollutant-stripping ability of plants and soils to remove pollutants from runoff.

4.4.3.2 Stormwater Management Suitability

Submerged gravel wetlands are designed as <u>off-line</u> systems for treatment of the water quality volume. They are not useful for flood protection and will need to be used in conjunction with another structural BMP, such as a conventional detention basin that can provide downstream channel protection, overbank flood protection, and extreme flood protection. All submerged gravel wetlands must provide flow diversion to protect the gravel bed.

Water Quality (WQv)

In submerged gravel wetlands, stormwater runoff flows through a gravel filter with wetland plants at the surface. Pollutants are removed through biological activity on the surface of the gravel and pollutant uptake by the plants. This practice is fundamentally different from other wetland designs because while most wetland designs behave like wet ponds, with differences in grading and landscaping, gravel wetlands are similar to filtering practices. The filtration process effectively removes suspended solids and particulates, biochemical oxygen demand (BOD), fecal coliform bacteria, and other pollutants.

Channel Protection (CPv)

The WQv is diverted to the submerged gravel wetland; therefore, it requires the use of another structural BMP to provide CPv extended detention.

4.4.3.3 Pollutant Removal Capabilities

The pollution removal efficiency of the submerged gravel wetland is similar to a typical wetland. Due to the settling environment of the gravel media, recent data show a TSS removal rate in excess of the 80% goal. Therefore the total suspended solids design pollutant removal rate of 80% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for submerged gravel wetlands, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.4.3.4 Application and Site Feasibility Criteria

Submerged gravel wetlands are well-suited for highly impervious areas where land available for structural BMPs is limited. Submerged gravel wetlands should primarily be considered for new construction or retrofit opportunities for commercial, industrial, and institutional areas where the sediment load is relatively low, such as: parking lots, driveways, loading docks, gas stations, garages, airport runways/taxiways, and storage yards.

To avoid clogging, the use of submerged gravel wetlands should be avoided in areas with less than 50% impervious cover, or high sediment yield sites with clay/silt soils.

The following basic criteria should be evaluated to ensure the suitability of a submerged gravel wetland for meeting stormwater management objectives on a site or development.

General Feasibility

- Suitable for use in high density/ultra-urban areas
- Not suitable for use in a residential subdivision
- Not suitable for use as a regional stormwater control. On-site applications are typically most feasible.

Physical Feasibility - Physical Constraints at Project Site

- <u>Drainage Area</u> 5 acres maximum for a submerged gravel wetland. Submerged gravel wetland systems need sufficient drainage area to maintain vegetation. See subsection 3.1.8 for guidance on performing a water balance calculation.
- <u>Space Required</u> Function of drainage area and available head at site.
- <u>Minimum Head</u> The local slope should be relatively flat (<2%). While there is no minimum slope requirement, there does need to be enough elevation drop from the inlet to the outlet to ensure that hydraulic conveyance by gravity is feasible (generally about 3 to 5 feet).
- <u>Pretreatment</u> Submerged gravel wetland designs shall include a sediment forebay or other equivalent pretreatment measures to prevent sediment or debris from entering and clogging the gravel bed.
- <u>Minimum Depth to Water Table</u> Unless they receive hotspot runoff, submerged gravel wetland systems can be allowed to intersect the groundwater table. If a submerged gravel wetland receives hotspot runoff and has an underlying water supply aquifer, a separation distance of 2 feet is required between the bottom of the gravel and the elevation of the seasonally high water table to prevent groundwater contamination.
- <u>Soils</u> Not recommended for clay/silt drainage areas that are not stabilized.

Other Constraints / Considerations

• See subsection 4.3.4 (*Stormwater Wetlands*) for additional planning and design guidance.

4.4.3.5 Planning and Design Standards

The following standards shall be considered **minimum** design standards for the design of submerged gravel wetlands. Submerged gravel wetlands that are not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- Submerged gravel wetlands shall have a contributing drainage area of 5 acres or less.
- Submerged gravel wetlands are generally applied to sites that have greater than 50% impervious cover. Any disturbed or denuded areas located within the area draining to and treated by the submerged gravel wetland shall be stabilized prior to construction and use of the submerged gravel wetland.

Manufactured (i.e., Proprietary) Submerged Gravel Wetlands:

 A manufacturer of a treatment system utilizing a submerged gravel wetland is identified below. Manufactured submerged gravel wetlands should be selected on the basis of good design, suitability for the desired pollution control goals, durability, ease of installation, ease of maintenance, and reliability. The product listed below is not the only product available, nor should its presence in this manual be construed as an endorsement of this product. It is merely shown as a manufactured submerged gravel wetland that is known to operate in the southeast.

StormTreat www.stormtreat.com

B. PRETREATMENT / INLETS

- Sediment regulation and removal is critical to sustain submerged gravel wetlands. A gravel wetland facility shall have a sediment forebay or equivalent upstream pretreatment.
- A sediment forebay is designed to remove incoming sediment from the stormwater flow prior to dispersal into the wetland. The forebay shall consist of a separate cell, formed by an acceptable barrier. A forebay shall be provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the gravel wetland facility.
- The forebay shall be sized to contain 0.1 inches per impervious acre (363 ft³) of contributing drainage and shall be no more than 4 to 6 feet deep. The pretreatment storage volume is part of the total WQv design requirement and may be subtracted from the WQv for wetland storage sizing.
- A fixed vertical sediment depth marker shall be installed in the forebay to measure sediment deposition over time. The bottom of the forebay may be hardened (e.g., using concrete, paver blocks, etc.) to make sediment removal easier.
- Inflow channels shall be stabilized with flared riprap aprons, or the equivalent. Exit velocities from the forebay to the wetland shall be non-erosive.

C. OUTLET STRUCTURES

• An outlet pipe shall be provided from the submerged gravel wetland to the facility discharge. The design shall ensure that the discharges occur in a non-erosive manner.

D. MAINTENANCE ACCESS

• A minimum 20' wide maintenance right-of-way or drainage easement shall be provided to a submerged gravel wetland from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.

E. LANDSCAPING

- A landscaping plan shall be developed that indicates the methods used to establish and maintain wetland coverage. Minimum considerations of the plan include: selection of plant species, planting plan and sources of plant material. More information on wetland plants can be found at the following websites:
 - http://wetlands.fws.gov/
 - http://www.npwrc.usgs.gov/resource/plants/floraso/species.htm
 - http://www.tva.gov/river/landandshore/stabilization/plantsearch.htm

4.4.3.6 Design Procedures

Step 1. Compute runoff control volumes

Calculate WQv and CPv in accordance with the guidance presented in Chapter 3. Consult local regulations for peak discharge control (i.e., detention) requirements.

Step 2. Determine if the development site and conditions are appropriate for the use of a stormwater wetland

Consider the subsections 4.4.3.4 and 4.4.3.5-A (Location and Siting).

Step 3. Confirm design criteria and applicability

Check with the local municipality of the Northeast Tennessee Regional Stormwater Planning Group, TDEC, or other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply to the site.

Step 4. Compute WQv peak discharge (Qwq)

The peak rate of discharge for the water quality design storm is needed for sizing the off-line diversion structures (see Chapter 3 for more information on this calculation).

- (a) Using WQv, compute CN
- (b) Compute time of concentration using TR-55 method
- (c) Determine appropriate unit peak discharge from time of concentration
- (d) Compute Q_{wq} in inches from unit peak discharge, drainage area, and WQv.

Step 5. Size flow diversion structure

A flow regulator should be supplied to divert the WQv to the submerged gravel wetland. Size low flow orifice, weir, or other device to pass Q_{wq} .

Step 6. Determine pretreatment volume

A sediment forebay is provided at each inlet, unless the inlet provides less than 10% of the total design storm inflow to the gravel wetland. The forebay shall be sized to contain 0.1 inches per impervious acre (363 ft^3) of contributing drainage and shall be 4 to 6 feet deep. The forebay storage volume counts toward the total WQv requirement and may be subtracted from the WQv for subsequent calculations.

Step 7. Design inlets, sediment forebay(s), outlet structures, maintenance access, and safety features.

See subsection 4.4.3.5 for more details.

Step 8. Design landscape plan

A landscape plan for a stormwater wetland shall be prepared to indicate how it will be stabilized and established with vegetation. See subsection 4.4.3.5-E (Landscaping) for more details.

4.4.3.7 Inspection and Maintenance Requirements

Note: Section 4.4.3.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of a submerged gravel wetland as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for submerged gravel wetlands, along with a suggested frequency for each activity. Individual gravel wetlands may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e.., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the gravel wetlands in proper operating condition at all times.

Inspection Activities	Suggested Schedule
• Ensure that inlets and outlets to each submerged gravel wetland cell are free from debris and not clogged.	Monthly
Check for sediment buildup in gravel bed.	Annually
Maintenance Activities	Suggested Schedule
• If sediment buildup is preventing flow through the wetland, remove gravel and sediment from cell. Replace with clean gravel and replant vegetation.	As needed
• Ensure that inlets and outlets to each submerged gravel wetland cell are free from debris and not clogged.	Monthly
Check for sediment buildup in gravel bed.	Annually

The Northeast Tennessee Regional Stormwater Planning Group encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of submerged gravel wetlands. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the submerged gravel wetland. Questions regarding stormwater facility inspection and maintenance should be referred to the local munipality of the Northeast Tennessee Stormwater Planning Group.

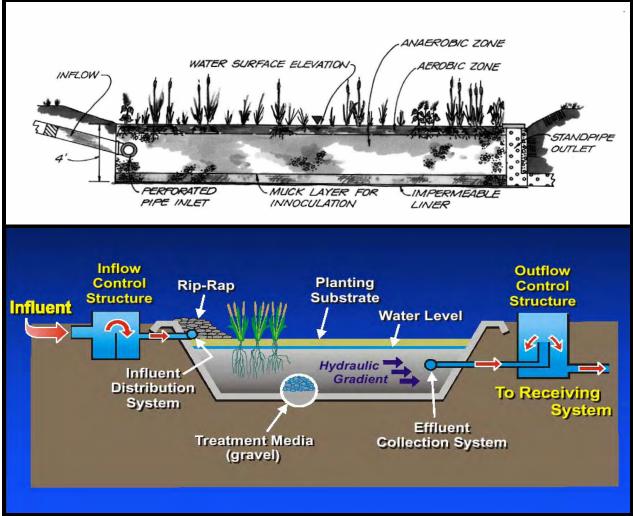
INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) SUBMERGED GRAVEL WETLAND INSPECTION CHECKLIST

_____ Owner Change since last inspection? Y N

Owner Name, Addr	ess, Phone:	
Date:	Time:	Site conditions:

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action				
Wetland Area	Wetland Area					
Healthy vegetation?						
Animal burrows present?						
Erosion in drainage area feeding wetland?						
Other (describe)?						
Inlet/Outlet Structures and Channels						
Clear of debris and functional?						
Trash rack clear of debris and functional?						
Sediment accumulation?						
Condition of concrete/masonry?						
Metal pipes in good condition?						
Control valve operation?						
Drain valve operation?						
Outfall channels function, not eroding?						
Other (describe)?						
Sediment Forebays						
Evidence of sediment accumulation?						
Wetland Vegetation Areas						
Vegetation adequate?						
Undesirable vegetation growth?						
Hazards						
Have there been complaints from residents?						
Public hazards noted?						

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:


Corrective Action Needed	Due Date

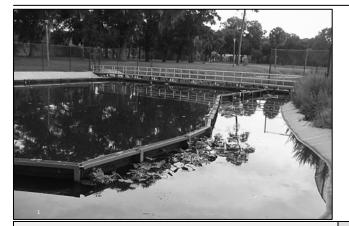
Inspector Signature:_____ Inspector Name (printed)____

4.4.3.8 Example Schematic

4.4.3.9 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Center for Watershed Protection (CWP). *Design of Stormwater Filtering Systems*. Prepared for the Chesapeake Research Consortium, Solomons, MD, and U.S. EPA Region 5, Chicago, IL, by the Center for Watershed Protection, Ellicott City, MD, 1996.
- Center for Watershed Protection. *Manual Builder*. Stormwater Manager's Resource Center, Accessed July 2005. <u>www.stormwatercenter.net</u>
- Maryland Department of the Environment (MDE). *Maryland Stormwater Design Manual*. 2000. Available at: <u>http://www.mde.state.md.us/programs/waterprograms/sedimentandstormwater/stormwater_design/index.asp</u>.
- New Jersey Department of Environmental Protection. Stormwater Best Management Practices Manual. 2004.
- Northern Virginia Planning District Commission (NVPDC). Northern Virginia BMP Handbook. Annadale, Virginia: November 1992.
- Schueler, T.R. Design of Stormwater Wetland Systems: Guidelines for Creating Diverse and Effective Stormwater Wetland Systems in the Mid-Atlantic Region. Washington, D.C.: Metrolpolitan Washington Council of Governments (MWCOG), October, 1992.

4.4.3.10 Suggested Reading


- Adams, L., Dove L.E., D.L. Leedy, and T. Franklin. *Urban Wetlands for Stormwater Control and Wildlife Enhancement Analysis and Evaluation.* Urban Wildlife Research Center, Columbia, Maryland, 1983.
- California Storm Water Quality Task Force. *California Storm Water Best Management Practice Handbooks.* 1993.
- City of Austin, TX. *Water Quality Management.* Environmental Criteria Manual, Environmental and Conservation Services, 1988.
- City of Sacramento, CA. Guidance Manual for On-Site Stormwater Quality Control Measures. Department of Utilities, 2000.
- Claytor, R.A., and T.R. Schueler. *Design of Stormwater Filtering Systems.* The Center for Watershed Protection, Silver Spring, MD, 1996.
- US EPA. Storm Water Technology Fact Sheet: Storm Water Wetlands. EPA 832-F-99-025, Office of Water, 1999.
- Faulkner, S. and C. Richardson. Physical and Chemical Characteristics of Freshwater Wetland Soils. Constructed Wetlands for Wastewater Treatment, ed. D. Hammer, Lewis Publishers, 831 pp, 1991.
- Guntenspergen, G.R., F. Stearns, and J. A. Kadlec. *Wetland Vegetation.* Constructed Wetlands for Wastewater Treatment, ed. D. A. Hammer, Lewis Publishers, 1991.

Metropolitan Washington Council of Governments (MWCOG). A Current Assessment of Urban Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone. March, 1992.

4.4.4 Alum Treatment System

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Intended for areas requiring regional stormwater treatment from a piped stormwater drainage system where general application BMPs are not feasible.
- Typical drainage area > 50 acres.
- Typically consists of mechanical/electrical dosing system, chemical storage facilities, a downstream settling pond and floc drying beds.

ADVANTAGES / BENEFITS:

- High pollutant removal capability.
- Can be used as a regional stormwater treatment BMP.

DISADVANTAGES / LIMITATIONS:

- High capital, operations and maintenance costs.
- Requires more frequent maintenance than most other stormwater treatment controls.
- Generally, not cost effective for small sites.
- Potential for stormwater quality impacts must be evaluated prior to design/use of the system.

MAINTENANCE REQUIREMENTS:

- Requires trained system operator.
- Restock chemicals frequently.
- Inspect and maintain all components on a frequent, routine basis.
- Remove floc build-up from settling pond.

Limited Application Water Quality BMP

Description: Alum treatment systems provide chemical treatment of stormwater runoff by means of adding liquid aluminum sulfate (alum) to sediment-laden runoff. The alum combines with suspended solids, phosphorus and heavy metals causing them to settle-out of suspension.

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: No.

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	High
Maintenance Burden:	High

LAND USE APPLICABILITY

Residential/Subdivision Use:	No
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids: 90%

Chapter 4: Design and Maintenance of Structural BMPs

4.4.4.1 General Description

The process of alum (aluminum sulfate) treatment provides treatment of stormwater runoff from a piped stormwater drainage system entering a wet pond by injecting liquid alum into storm sewer lines on a flowweighted basis during rain events. When added to runoff, liquid alum forms the harmless precipitates of aluminum hydroxide [Al(OH)₃] and aluminum phosphate [AlPO₄]. These precipitates combine with suspended solids, phosphorus and heavy metals, which then settle-out in a downstream capture pond.

An alum treatment system generally consists of three parts: a flow-weighted dosing system that fits inside a storm sewer manhole; remotely located alum storage tanks; and a downstream settling pond that allows the alum, pollutants and sediments to settle out. (Kurz, 1998). Disposal of the floc that settles in the downstream pond is critical, because of the concentration of dissolved chemicals, and also because bacteria and viruses remain viable in the floc layer (Kurz, 1998). In addition to the settling pond, a separate floc collection pump-out facility should be installed to further reduce the chance of resuspension and transport of floc to receiving waterbodies. The pump disposes the floc into the sanitary sewer system or onto nearby upland areas or sludge drying beds. Permits (from the local utility) will be required to pump to the sanitary sewer, however. The quantity of sludge produced at a site can be as much as 0.5 percent of the volume of water treated (Gibb et al., 1991). Figures 4-66 and 4-67 provide photographs of an alum treatment system settling pond and dosing/injection system, respectively.

Figure 4-66. Settling Basin for an Alum Treatment System

Figure 4-67. Dosing/Injection Components of an Alum Treatment System (Source: Georgia Stormwater Management Manual)

The precipitate that is formed when alum is injected into the stormwater system is stable in sediments and will not re-dissolve due to changes in redox potential or pH under conditions normally found in surface water bodies. Laboratory or field testing may be necessary to verify feasibility and to establish design, maintenance, and operational parameters, such as the optimum coagulant dose required to achieve the desired water quality goals, chemical pumping rates and pump sizes.

Alum treatment systems can be expensive to construct and maintain. Capital construction costs depend primarily on the number of outfall locations treated rather than the size of the area draining to the system. Operations and maintenance expenses include costs for chemicals, power to the system, manpower for routine inspections and maintenance, and equipment renewal and replacement costs. In addition, regulatory agencies or wastewater utilities may require long-term monitoring of water quality downstream of alum treatment systems, which further increases maintenance costs.

4.4.4.2 Stormwater Management Suitability

Alum treatment systems are designed primarily for large watersheds. They are designed solely for the purpose of treating stormwater quality and do not have the ability to provide channel or flood protection.

4.4.4.3 Pollutant Removal Capabilities

The total suspended solids design pollutant removal rate of 90% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment.

For additional information and data on pollutant removal capabilities for alum treatment systems, see the National Pollutant Removal Performance Database (2nd Edition) available at <u>www.cwp.org</u> and the International Stormwater Best Management Practices (BMP) Database at <u>www.bmpdatabase.org</u>.

4.4.4.4 Application and Site Feasibility Criteria

The following basic criteria should be evaluated to ensure the suitability of an alum treatment system for meeting stormwater management objectives on a site or development.

General Feasibility

- Well-suited for large drainage areas that discharge into a closed body of water (e.g., an existing lake or pond).
- Suitable for use in high density/ultra-urban areas.
- Suitable for use as a regional stormwater control.

Physical Feasibility - Physical Constraints at Project Site

• <u>Drainage Area</u> – Typically 50 acres minimum for an alum treatment system.

4.4.4.5 Planning and Design Guidance

Alum treatment systems are fairly complex, and design details are beyond the scope of this manual. Further information can be obtained from the Internet and by contacting engineers who have designed and implemented successful systems. The local municipality shall have the authority to set the design conditions for alum treatment systems on a case-by-case basis.

The following information is provided as guidance for the design of alum treatment systems.

- Injection points should be 100 feet upstream of discharge points.
- Alum concentration is typically 10 µg/l.
- Alum treatment systems may need to control pH.
- For new basin design, the required size is approximately 1% of the drainage basin size, as opposed to 10 to 15% of the drainage basin area for a standard detention basin.
- No volume requirement is required when discharging into a closed body of water (e.g., an existing lake or pond).

4.4.4.6 Inspection and Maintenance Requirements

Note: Section 4.4.4.6 and the operation and maintenance document supplied by the alum system designer must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of an alum treatment system as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for alum treatment systems, along with a suggested frequency for each activity. Individual alum treatment systems may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the alum treatment system in proper operating condition at all times. Inspections and maintenance of the alum treatment system must be performed by a trained system operator.

Ins	pection Activities	Suggested Schedule	
•	Dosing equipment – monitor dosage of alum and other chemicals. Also monitor the expected flows through the system.		
•	Perform routine inspection of dosing equipment and pump-out facility to ensure that all equipment is in proper operating condition.		
٠	Inspect dosing equipment and storage facility for signs of leaks or spills.	Monthly or more frequently	
٠	Inspect chemical amounts and restock if needed.		
•	Monitor pH and other parameters in the settling basin to determine potential negative impacts to receiving waters.		
٠	Inspect settling basin for signs of damage, impending failure, and poor water quality.		
•	Inspect storage capacity of settling basin and floc drying beds (if used).		
Mai	ntenance Activities	Suggested Schedule	
٠	Adjust the dosage of alum and other chemicals and possibly regulate flows through the basin to ensure proper dosage and delivery of runoff to the settling basin.		
•	Perform maintenance and repair of pump equipment, chemical supplies and delivery system.	As Needed	
•	Dredge settling basin and properly dispose of accumulated floc.		

The Northeast Tennessee Regional Stormwater Planning Group encourages the use of the inspection checklist presented below for guidance in the inspection and maintenance of the alum treatment system. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the treatment system. Owners of alum treatment systems are encouraged to provide additional inspection/maintenance items to ensure the long-term proper operation of the treatment to the local municipality of the Northeast Tennessee Stormwater Planning Group.

INSPECTION CHECKLIST FOR ALUM TREATMENT SYSTEMS

Location:			Owner Change since last inspection?	Y	Ν
Owner Name, Addre	ess, Phone:				
Date:	Time:	Site conditions:			

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Dosing System		Sommenta/Someetive Action
Dispensing proper dose?		
Signs of leaks or spills?		
In proper operating condition?		
Chemical Storage Facility		
Signs of leaks or spills?		
Proper delivery of chemicals to dosing system?		
In proper operating condition?		
Settling Pond	•	
pH and water quality condition?		
Erosion on embankment?		
Animal burrows in embankment?		
Cracking, sliding, bulging of dam?		
Blocked or malfunctioning drains?		
Leaks or seeps on embankment?		
Obstructions of spillway(s)?		
Clear of debris and functional?		
Sediment/floc accumulation?		
Condition of concrete/masonry?		
Metal pipes in good condition?		
Control valve operation?		
Pond drain valve operation?		
Channels/spillways function, not eroding?		
Other (describe)?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____ Inspector Name (printed)____

4.4.4.7 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Gibb, A., B. Bennet, and A. Birkbeck. Urban Runoff Quality and Treatment: A Comprehensive Review. Prepared for the Vancouver Regional District, the Municipality of Surrey, British Columbia, Ministry of Transportation and Highways, and British Columbia Ministry of Advanced Education and Training. Document No. 2-51-246(242), 1991.
- Harper, H.H. and J.L. Kerr. *Design, Alum Treatment of Stormwater Runoff: The First Ten Years.* Environmental Research and Design, Orlando, Florida, 1996.
- Kurz, R. Removal of Microbial Indicators from Stormwater Using Sand Filtration, Wet Detention, and Alum Treatment Best Management Practices. Southwest Florida Water Management District, Brooksville, Florida, 1998.

www.stormwaterauthority.org/assets/alum%20injection.pdf

4.4.4.8 Suggested Reading

- Center for Watershed Protection. *Manual Builder*. Stormwater Manager's Resource Center. <u>www.stormwatercenter.net</u>
- Maryland Department of the Environment. *Maryland Stormwater Design Manual, Volumes I and II.* Prepared by Center for Watershed Protection (CWP), 2000.
- US EPA. Storm Water Technology Fact Sheet: Sand Filters. EPA 832-F-99-007. Office of Water. 1999.
- Walker, W. *Phosphorus Removal by Urban Runoff Detention Basins*. Lake and Reservoir Management, North American Society for Lake Management, 314, 1987.

This page left intentionally blank

4.4.5 Proprietary Structural BMPs

Limited Application Water Quality BMP

Description: Proprietary systems are defined as manufactured stormwater treatment systems that are available from commercial vendors.

REASONS FOR LIMITED USE	STORMWATER MANAGEMENT SUITABILITY	
Depending on the proprietary system, there may	Stormwater Quality:	
be:	Channel Protection:	
 Limited performance data Application constraints 	Detention/Retention:	
 High maintenance requirements Higher costs than other structural control alternatives 	LAND USE APPLICABILITY	
	Residential/Subdivision Use:	
KEY CONSIDERATIONS	High Density/Ultra Urban Use: 🛛 🕷	
 Independent performance data must be available to prove a demonstrated capability 	Commercial/Industrial Use: *	
of meeting stormwater management goal(s)System or device must be appropriate for	POLLUTANT REMOVAL	
 use in local conditions Installation and operations/maintenance 	Total Suspended Solids: *	
requirements must be understood by all parties approving and using the system or device in question	* Depends on the specific proprietary structural control.	

Note: The city does not recommend any specific commercial vendors for proprietary systems. This subsection is being included in order to provide local municipalities with a rationale for approving the use of a proprietary system or practice.

4.4.5.1 General Description

There are many types of commercially-available proprietary stormwater structural controls for both water quality treatment and quantity control. These systems include:

- Hydrodynamic systems such as gravity and vortex separators
- Filtration systems
- Catch basin media inserts
- Chemical treatment systems
- Package treatment plants
- Prefabricated detention structures

Many proprietary systems are useful on small sites and space-limited areas where there is not enough land or room for other structural BMP alternatives. Proprietary systems can often be used in pretreatment applications in a treatment train. However, proprietary systems are often more costly than other alternatives and may have high maintenance requirements. Perhaps the largest difficulty in using a proprietary system is the lack of adequate independent performance data, particularly for use in local conditions. Below are general guidelines that should be followed before considering the use of a proprietary commercial system.

4.4.5.2 Guidelines for Using Proprietary Systems

In order for use as a limited application control, a proprietary system must have a demonstrated capability of meeting the stormwater management goals for which it is being intended. This means that the system must provide:

- (1) Independent third-party scientific verification of the ability of the proprietary system to meet water quality treatment objectives and/or to provide water quantity control (channel or flood protection);
- (2) Proven record of longevity in the field; and,
- (3) Proven ability to function in local conditions (e.g., climate, rainfall patterns, soil types, etc.).

For a propriety system to meet item (1) listed above, the following monitoring criteria should be met for supporting studies:

- At least 15 storm events must be sampled
- The study must be independent or independently verified (i.e., may not be conducted by the vendor or designer without third-party verification)
- The study must be conducted in the field, as opposed to laboratory testing
- Field monitoring must be conducted using standard protocols which require proportional sampling both upstream and downstream of the device
- Concentrations reported in the study must be flow-weighted
- The propriety system or device must have been in place for at least one year at the time of monitoring

Although local data is preferred, data from other regions can be accepted as long as the design accounts for the local conditions.

The city may submit a proprietary system to further scrutiny based on the performance of similar practices. A poor performance record or high failure rate is valid justification for not allowing the use of a proprietary system or device. Consult the city for more information in regards to the use of proprietary structural stormwater controls.

4.4.6 Underground Detention

Limited Application Water Quality BMP

Description: Detention storage located in underground pipe systems or vaults designed to provide water quantity control through detention and/or extended detention of stormwater runoff.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum drainage area = 25 acres.
- Access point for maintenance required.
- Used downstream of a water quality BMP.

ADVANTAGES / BENEFITS:

- To be used for space-limited applications only.
- Good for retrofitting small urbanized lots.
- Concrete vaults or pipe systems can be used.
- Longevity is high, with proper maintenance.

DISADVANTAGES / LIMITATIONS:

- Controls for stormwater quantity only not intended to provide water quality treatment.
- Dissolved pollutants are not removed.
- Frequent maintenance required.

MAINTENANCE REQUIREMENTS:

- Remove debris from inlet and outlet structures.
- Monitor sediment accumulation.
- Clean out sediment and floatable debris using catch basin cleaning equipment (vacuum pumps).

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	No
Channel Protection:	Yes
Detention/Retention:	Yes

Accepts hotspot runoff: No.

COST CONSIDERATIONS

Land Requirement:	Med - High
Capital Cost:	Med - High
Maintenance Burden:	Med - High

LAND USE APPLICABILITY

Residential/Subdivision Use:	No
High Density/Ultra Urban Use:	No
Commercial/Industrial Use:	Yes

POLLUTANT REMOVAL

Total Suspended Solids: Low

4.4.6.1 General Description

Underground detention is typically utilized on sites where developable surface area is at a minimum. Underground detention facilities can be either box-shaped facilities constructed with reinforced concrete, facilities constructed with large diameter metal or plastic pipe or commercially-available proprietary underground systems. All methods serve as alternatives to surface dry detention for stormwater quantity control where there is not adequate land for a dry detention basin or multi-purpose detention area.

Underground detention can provide channel protection through extended detention of the channel protection volume and overbank flood control (and in some cases extreme flood) through normal detention. Basic storage design and routing methods are the same as for dry detention basins except that the bypass for high flows must be included in the design.

Due to the potential problems that local conditions present, the Northeast Tennessee Regional Stormwater Planning Group does not support the use of underground detention unless other peak discharge control options are deemed physically infeasible.

4.4.6.2 Pollutant Removal Capabilities

Underground detention facilities are not capable of significant pollutant removal. Therefore, because underground detention is not intended for water quality treatment, it must be used in a treatment train approach with other structural BMPs that provide treatment of the WQv. This will prevent the underground pipe systems or vaults from becoming clogged with trash or sediment and significantly reducing the maintenance requirements.

4.4.6.3 Planning and Design Standards

If underground detention is allowed by the local municipality, the following standards shall be considered **minimum** design standards for the design of underground detention. Underground detention that is not designed to these standards will not be approved. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- The maximum contributing drainage area to be served by a single underground detention vault or tank is 25 acres.
- Flood protection controls for peak discharge control should be designed as final controls for on-site stormwater. Therefore, underground detention will typically be located downstream of structural stormwater BMPs that are designed to provide treatment of the water quality volume (WQv) and channel protection volume (CPv).
- Underground detention shall be placed in a drainage easement that is recorded with the deed and shown on the plan. The drainage easement shall be located 15 feet from the outside limits of the underground detention structure. Minimum setback requirements for the easement shall be as follows unless otherwise specified by the Director:
 - From a public water system well TDEC specified distance per designated category
 - From a private well 50 feet; if the well is down gradient from a land use that must obtain a Special Pollution Abatement Permit, then the minimum setback is 250 feet
 - From a septic system tank/leach field 50 feet
- The drainage easement shall be located 15 feet from the outside limits of the underground detention structure. The first floor elevation (FFE) for any structure adjacent to underground detention shall have an elevation no lower than 1 foot above the emergency spillway elevation.

B. GENERAL DESIGN

- Underground detention shall consist of the following elements, designed in accordance with the specifications provided in this section.
 - (1) An outlet structure;

- (2) An emergency spillway; and
- (3) Maintenance access.
- Underground detention systems are sized to provide extended detention of the channel protection volume over 24 hours and temporarily store the volume of runoff required to provide locally regulated flood protection.
- Routing calculations must be used to demonstrate that the storage volume is adequate. See Chapter 3 for procedures on the design of detention storage.
- Adequate maintenance access must be provided for all underground detention systems. Access must be provided over the inlet pipe and outflow structure. Access openings can consist of a standard frame, grate and solid cover, or a removable panel. Vaults with widths of 10 feet or less should have removable lids.

C. PHYSICAL SPECIFICATIONS / GEOMETRY

- Underground detention vaults and tanks must meet structural requirements for overburden support and traffic loading if appropriate.
- Detention Vaults: Minimum 3,000 psi structural reinforced concrete may be used for underground detention vaults. All construction joints must be provided with water stops. Cast-in-place wall sections must be designed as retaining walls. The maximum depth from finished grade to the vault invert should be 20 feet.
- Detention Pipes: The minimum pipe diameter for underground detention is 36 inches.

D. INLET and OUTLET STRUCTURES

- A separate sediment sump or vault chamber sized to contain 0.1 inch per impervious acre (363 ft³) of contributing drainage should be provided at the inlet for underground detention systems that are in a treatment train with off-line water quality treatment structural BMPs.
- For CPv control, a low flow orifice capable of releasing the channel protection volume over 24-72 hours must be provided. The channel protection orifice should have a minimum diameter of 3 inches and should be adequately protected from clogging by an acceptable external trash rack. The orifice diameter may be reduced to 1 inch if internal orifice protection is used (i.e., an over perforated vertical stand pipe with 0.5-inch orifices or slots that are protected by wire cloth and a stone filtering jacket). Adjustable gate valves can also be used to achieve this equivalent diameter.
- An additional outlet is sized for Overbank Flood Peak Flow control (based upon hydrologic routing calculations) and can consist of a weir, orifice, outlet pipe, combination outlet, or other acceptable control structure. See Chapter 3 for more information on the design of outlet works.
- Water shall not be discharged from underground detention in an erosive manner. Riprap, plunge pools or pads, or other energy dissipaters are to be placed at the end of the outlet to prevent scouring and erosion. If a pond outlet discharges immediately to a channel that carries dry weather flow, care should be taken to minimize disturbance along the downstream channel and streambanks, and to reestablish a forested riparian zone in the shortest possible distance (if the downstream area is located in a water quality buffer). See Chapter 7 for more guidance.

E. EMERGENCY SPILLWAY

• A high flow bypass shall be included in the underground detention design to safely pass Extreme Flood Peak Flows in the event of outlet structure blockage or mechanical failure. The bypass shall be located so that downstream structures will not be impacted by emergency discharges.

F. MAINTENANCE ACCESS

• A maintenance right-of-way or easement having a minimum width of 20 feet shall be provided from a driveway, public or private road. The maintenance access easement shall have a maximum slope of

no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles.

• The maintenance access shall extend to the forebay (if included) and outlet works, and, to the extent feasible, be designed to allow vehicles to turn around.

4.4.6.4 Design Procedures

In general, site designers should perform the following design procedures when designing underground detention.

Step 1. Compute runoff control volumes.

Calculate WQv and CPv in accordance with the guidance presented in Chapter 3. Consult local regulations for peak discharge control (i.e., detention) requirements.

Step 2. Confirm design criteria and applicability.

Consider any special site-specific design conditions/criteria from subsection 4.4.6.3. Check with the Northeast Tennessee Regional Stormwater Planning Group, TDEC, or other agencies to determine if there are any additional restrictions and/or surface water or watershed requirements that may apply to the site.

Step 3. Calculate discharge release rates and water surface elevations.

Set up stage-storage-discharge relationships for the control structure for the 2, 10, 25 and 100-year storms.

Step 4. Design spillway(s)

Size emergency spillway (bypass) and analyze safe passage of the Extreme Flood. Set the emergency spillway elevation a minimum of 0.1 feet above the 100-year water surface elevation.

Step 5. Design inlets, outlet structures and maintenance access.

See subsection 4.4.6.3 for more details.

4.4.6.5 Maintenance Requirements and Inspection Checklist

Note: Section 4.4.6.5 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective operation of underground detention as designed. It is the responsibility of the property owner to maintain all stormwater BMPs in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for underground detention, along with a suggested frequency for each activity. Individual underground detention locations may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain the pond in proper operating condition at all times.

Ins	pection Activities	Suggested Schedule
•	After several storm events or an extreme storm event, inspect for: signs of clogging of the inlet or outlet structures and sediment accumulation.	As Needed
•	Inspect for: trash and debris; clogging of the outlet structures and any pilot channels; excessive erosion; sediment accumulation in the basin and inlet/outlet structures; tree growth on dam or embankment; the presence of burrowing animals; standing water where there should be none; vigor and density of the grass turf on the basin side slopes and floor; differential settlement; cracking; leakage; and slope stability.	Semi-annually
•	Inspect that the outlet structures, pipes, and downstream and pilot channels are free of debris and are operational.	
•	Note signs of pollution, such as oil sheens, discolored water, or unpleasant odors.	Annually
Check for sediment accumulation in the facility.		
•	Check for proper operation of control gates, valves or other mechanical devices.	
Ма	intenance Activities	Suggested Schedule
•	Perform structural repairs to inlet and outlets	Marthlesser
•	Clean and remove debris from inlet and outlet structures.	Monthly or as needed
٠	Repair damage to inlet or outlet structures, control gates, valves, or other mechanical devices; repair undercut or eroded areas.	As Needed
•	Monitor sediment accumulations, and remove sediment when the pond volume has become reduced significantly.	As Needed

The Northeast Tennessee Regional Stormwater Planning Group encourages the use of the inspection checklist that is presented on the next page to guide the property owner in the inspection and maintenance of underground detention facilities. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the underground detention facilities. Questions regarding stormwater facility inspection and maintenance should be referred to the local municipality of the Northeast Tennessee Stormwater Planning Group.

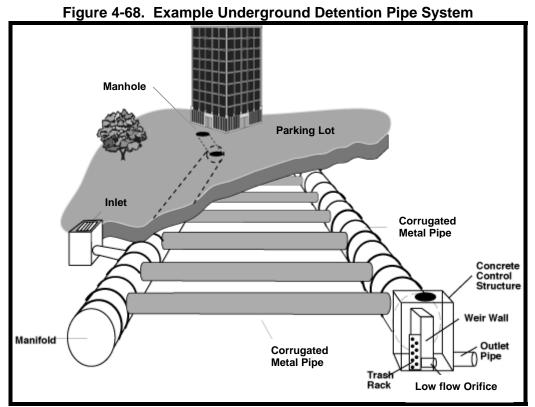
INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE (continued) UNDERGROUND DETENTION INSPECTION CHECKLIST

Location:			Owner Change since last inspection?	Y	Ν
Owner Name, Addr	ess, Phone:				
Date:	Time:	Site conditions:			

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Inlet/Outlet Structures		
Clear of debris and functional?		
Trash rack clear of debris and functional?		
Sediment accumulation?		
Condition of concrete/masonry?		
Metal pipes in good condition?		
Control valve operational?		
Pond drain valve operational?		
Outfall channels function, not eroding?		
Other (describe)?		
Pond Bottom		
Excessive sedimentation?		

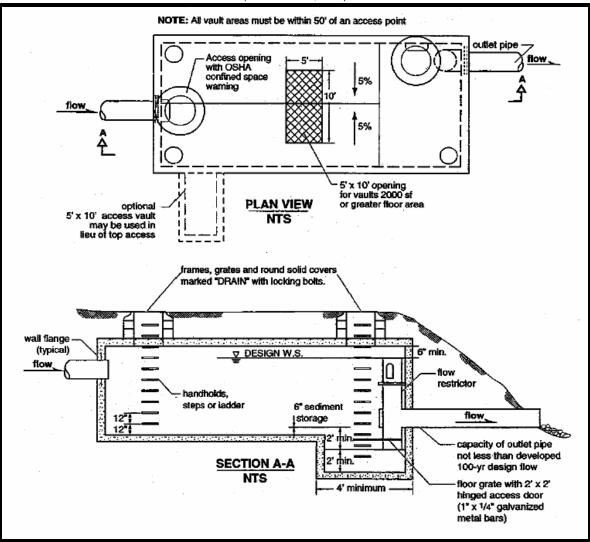
If any of the above inspection items are **UNSATISFACTORY**, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date



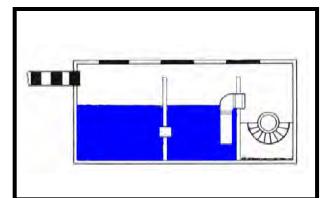
Inspector Signature:

Inspector Name (printed)____



4.4.6.6 Example Schematics

4.4.6.7 References


- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual, Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- Washington State Department of Ecology. *Stormwater Management Manual for Western Washington.* 2000.

This page left intentionally blank

4.4.7 Oil-Grit (Gravity) Separator

Limited Application Water Quality BMP

Description: The oil/grit separator is a device designed to remove settleable solids, oil and grease, debris and floatables from stormwater runoff. This is done through gravitational settling and trapping of pollutants. Oil-grit separators are also called gravity separators or oil/water separators.

KEY CONSIDERATIONS

DESIGN GUIDELINES:

- Maximum drainage area of 1 acre.
- Access for maintenance is required.
- Performance dependent on design and frequency of inspection and cleanout of unit.
- Openings to device must be 1/16 inch or less to prevent mosquito intrusion and breeding.
- Install as an off-line device unless separator can be sized to handle a small drainage area.
- Install inspection/collection manhole on downstream side to provide easy access for sampling of effluent.

ADVANTAGES / BENEFITS:

- Good for sites where larger, or above-ground BMPs are not an option, or for retrofitting small urbanized lots.
- Can be used as pretreatment for other BMPs.
- Longevity is high, with proper maintenance.
- Standardized designs allow for easy installation.

DISADVANTAGES / LIMITATIONS:

- Cannot alone achieve the 80% TSS removal target.
- Limited performance data.
- Dissolved pollutants are not removed.
- Frequent maintenance required.

MAINTENANCE REQUIREMENTS:

- Inspect the gravity separator unit.
- Clean out sediment, oil and grease, and floatable debris using catch basin cleaning equipment (vacuum pumps).

STORMWATER MANAGEMENT SUITABILITY

Stormwater Quality:	Yes
Channel Protection:	No
Detention/Retention:	No

Accepts hotspot runoff: Yes, but two feet of separation distance required to water table when used in hotspot areas

COST CONSIDERATIONS

Land Requirement:	Low
Capital Cost:	Med - High
Maintenance Burden:	Med - High

LAND USE APPLICABILITY

Residential/Subdivision Use:	No
High Density/Ultra Urban Use:	Yes
Commercial/Industrial Use:	No

POLLUTANT REMOVAL

Total Suspended Solids: 40%

4.4.7.1 General Description

Oil-grit separators (also called oil/water separators or gravity separators) are hydrodynamic separation devices that are designed to remove grit and heavy sediments, oil and grease, debris and floatable matter (e.g., litter) from stormwater runoff through gravitational settling and trapping. There are two basic types of oil-grit separators, as displayed in Figure 4-71, in Section 4.4.7.8. Conventional separators rely upon gravity, physical characteristics of oil and sediments, and good design parameters to achieve pollutant removal. Coalescing plate interceptor (CPI) separators contain closely-spaced plates which greatly enhance the removal efficiency for oils and greases. In addition, a wide variety of separator systems are commercially-available in a variety of layouts, for which vendors have design data and procedures. Example schematics for both types of oil-water separators are displayed in Section 4.4.7.8.

Conventional oil-grit separator units contain a permanent pool of water and typically consist of an inlet chamber, separation/storage chamber, a bypass chamber, and an access port for maintenance purposes. Runoff enters the inlet chamber where heavy sediments and solids drop out. Then the flow moves into the main separation chamber, where further settling of suspended solids takes place. Oil and grease are skimmed and stored in a waste oil storage compartment for future removal. After moving into the outlet chamber, the clarified runoff is then discharged to the site's stormwater conveyance system. Oil-grit separators are sized based on a design flow rate, the Water Quality Peak Flow Rate (Q_{wq}). This contrasts with most other stormwater structural controls, which are sized based on capturing and treating a specific volume.

CPI separators include coalescing tubes or plates that provide an additional media in which minute oil globules can agglomerate to aid in the separation process. Oil that agglomerates around the coalescing tubes/plates can easily be skimmed through the gravity process. CPI separators must be utilized in "hotspot" areas where oil, grease, or other petroleum products are potential pollutants (e.g., fueling areas, gas stations, etc.).

The performance of oil-grit separator systems is based primarily on the relatively low solubility of petroleum products in water and the difference between the specific gravity of water and the specific gravities of petroleum compounds. Separators are not designed to separate other products such as solvents, detergents, or dissolved pollutants. The typical oil-grit separator unit may be enhanced with a pretreatment swirl concentrator chamber, oil draw-off devices that continuously remove the accumulated light liquids, and flow control valves that regulate the flow rate into the unit. Separators are available as prefabricated proprietary systems from a number of different commercial vendors. Some of the enhancements added by commercial vendors are presented in the example schematics presented in section 4.4.7.8.

4.4.7.2 Stormwater Management Suitability

Oil-grit separators are designed solely as stormwater quality treatment and do not have the ability to provide channel protection or flood protection. An important consideration when designing an oil-grit separator system for a site is how to bypass large storm events that exceed the design flow capacity around the separator without damaging the unit, exceeding the design flow capacity, or resuspending collected pollutants. Since resuspension of accumulated sediments and oil droplets is possible during heavy storm events, oil-grit separator units are typically installed off-line with a bypass installed to minimize pollutant wash-out or resuspension.

Water Quality (WQv)

To treat stormwater runoff, oil-grit separators rely on gravity and trapping to filter pollutants. An oil-grit separator cannot alone achieve the 80% TSS removal criteria. Therefore, separators are frequently used as the upstream pretreatment measure in a series of BMPs, ahead of a detention basin or constructed wetland.

4.4.7.3 Pollutant Removal Capabilities

Testing of gravity separators has shown that they can remove between 40% and 50% of the TSS loading when used in an off-line configuration (Curran, 1996 and Henry, 1999). Gravity separators also provide

removal of debris, hydrocarbons, trash and other floatables. They provide only minimal removal of nutrients and organic matter.

The total suspended solids design pollutant removal rate of 40% is a conservative average pollutant reduction percentage for design purposes derived from sampling data, modeling and professional judgment

4.4.7.4 Application and Feasibility Criteria

One of the most important selection criteria when considering an oil-grit separator is the long-term maintenance and operation costs, and the need for regular inspections and cleanout. Inspection and maintenance needs for such systems can be considered high relative to other stormwater BMPs. Therefore, the oil-grit separator system should only be constructed if the property owner or tenant of the site has both the physical and fiscal ability to perform regular inspection and maintenance of the system on a long-term basis. This is one of the constraints that will be considered by the local municipality when oil-grit separators are proposed as a BMP for a development or redevelopment site.

Oil-grit separators are best used in commercial, industrial and transportation land uses and are intended primarily as a pretreatment measure for high-density or ultra-urban sites, or for use in hydrocarbon hotspots, such as gas stations and areas with high vehicular traffic. However, separators cannot be used for the removal of dissolved or emulsified oils or for pollutants such as coolants, soluble lubricants, glycols and alcohols. Suitable applications of an oil-grit separator include:

- pretreatment for other structural controls;
- parking lots, streets, driveways, truck loading areas;
- runways, marinas, loading wharves;
- gasoline stations, refueling areas;
- automotive repair facilities, oil-change businesses, fleet maintenance yards;
- recycling or salvage yards which accept automotive equipment; and,
- commercial vehicle washing facilities.

4.4.7.5 Planning and Design Standards

Northeast Tennessee Regional Stormwater Planning Group's design standards for oil-grit (gravity) separators are presented below. Design specifications developed by a commercial vendor for prefabricated proprietary systems can also be utilized, but must be approved where such specifications differ and/or are less stringent from the standards presented below. The local municipality shall have the authority to require additional design conditions if deemed necessary.

A. LOCATION AND SITING

- Any individual oil-grit separator shall have a contributing drainage area no greater than 1 acre.
- It is desirable to maintain reasonable dimensions by bypassing larger storm flows in excess of the design flow rates. Thus, it is preferred that oil-grit separators be located off-line. An off-line separator can be an existing or proposed manhole with a baffle or other control (shown in Figure 4-71).
- Oil-grit separator systems can be installed in almost any soil or terrain. Since these devices are underground, appearance is not an issue and public safety risks are low.
- The design loading rate for oil-grit separators is low; therefore, they can only be cost-effectively sized to
 detain and treat the water quality volume, or other low flows if required by local municipalities. It is
 usually not economical or feasible to size an oil-grit separator to treat large design storms. Oil-grit
 separators require frequent maintenance for the life of the separator unit. Maintenance can be minimized
 (and performance can be increased) by careful planning and design, particularly upstream and
 downstream of the separator unit.

B. PHYSICAL SPECIFICATIONS / GEOMETRY

- Design procedures for commercially available oil-grit separators are usually given by the manufacturer in simplified tables or graphs based on field testing and observed pollutant removal rates. Pollutant removal rates higher than those indicated in Section 4.4.7.3 must be proven using the criteria for proprietary BMPs presented in Section 4.4.5 of this manual.
- Oil-grit separators must be constructed with watertight joints and seals.
- The separation chamber shall provide for three separate storage volumes, as follows:
 - (1) A volume for separated oil storage at the top of the chamber;
 - (2) A volume for settleable solids accumulation at the bottom of the chamber; and,
 - (3) A volume required to give adequate flow-through detention time for separation of oil and sediment from the stormwater flow.
- Ideally, a gravity separator design will provide an oil draw-off mechanism to a separate chamber or storage area. This design is required where a gravity separator is utilized to treat oil, grease and/or petroleum hotspots.
- Oil-grit separators are typically designed to bypass runoff flows in excess of the water quality volume peak flow. Some designs have built-in high flow bypass mechanisms, whereas others require a diversion structure or flow splitter located upstream of the device in the drainage system. Bypass mechanisms must minimize potential for captured pollutants from being washed-out or resuspended by large flows. Regardless of the bypass mechanism, an adequate outfall/outlet must be provided for both the discharge from the separator itself, and the bypassed discharge. Runoff shall be discharged in a non-erosive manner.
- The device shall be designed such that the velocity through the separation chamber does not exceed the entrance velocity.
- A trash rack shall be included in the design to capture floating debris, preferably near the inlet chamber to prevent debris from becoming oil impregnated.
- The total wet storage of the gravity separator unit shall be no less than 400 cubic feet per contributing impervious acre.
- The theoretical sizing of a conventional oil-grit separator requires the use of Stokes Law for the computation of rise velocity of oil droplets:

 $_{p})D_{p}^{2}$

Equation 4.4.7.1	$V = \frac{1.79}{2}$	$9 \times 10^{-8} (S_w - S_w)$
-	v_p	N

where: V_p = upward rise velocity of petroleum droplet (ft/s)

 S_w = specific gravity of water (0.998 to 1.000)

- S_p = specific gravity of the petroleum droplet (typically 0.85 to 0.95)
- D_p = diameter of petroleum droplet to be removed (microns)

N = absolute viscosity of water (poises)

The expected temperature is generally chosen for cold winter months. Typical values for the specific gravity and absolute viscosity of water at various temperatures are shown in the following table:

Temperature	Sw	N
32° F	0.999	0.01794
40° F	1.000	0.01546
50° F	0.999	0.01310
60° F	0.999	0.01129
70° F	0.998	0.00982

Sizing a Conventional Oil-Grit Separator:

• Using V_p above, a conventional oil-grit separator can be sized as follows:

Equation 4.4.7.2	$D = \left(\frac{\mathbf{Q}}{RV_H}\right)^{0.5}$
Equation 4.4.7.3	W = RD
Equation 4.4.7.4	$L = \frac{V_H D}{V_P}$
Equation 4.4.7.5	$V_H = \frac{V_P D}{L} = 15(V_P)$

- where: D = depth of unit (feet), generally between 3 and 8 feet
 - W = width of unit (feet), usually twice the depth
 - L = length of unit (feet), usually fifteen times the depth
 - Q = design flow rate (cfs), i.e., the water quality peak flow rate, Q_{wq}
 - R = width to depth ratio, generally a value of 2 is recommended
 - V_{H} = allowable horizontal velocity (ft/s), maximum 0.05 ft/s
 - V_p = upward rise velocity of oil droplet (ft/s)
- The total depth shall be adjusted by adding 1 foot of freeboard to the depth calculated using the equations above, or equations provided by a manufacturer.
- Top baffles should extend downward by 0.85D, and bottom baffles should extend upward by 0.15D, where D is the depth of the unit (in feet). The distribution baffle should be located at a distance of 0.10L from the inlet of the unity, where L is the length of the unit (in feet).

Sizing a Coalescing Plate Interceptor (CPI) Separator:

- CPI separators require considerably less space than a conventional separator to obtain the same effluent quality. A CPI separator is able to process smaller oil droplets by collecting them upon polyurethane plates or other materials. It is recommended that the design engineer consult vendors for a plate package that will meet site and flow criteria. Manufacturers will typically identify the capacity of various standard units.
- Using V_p above, a CPI separator can be sized as follows:

$$A_{P} = \frac{Q}{EV_{P}\cos(H)}$$

where: A_p = total surface area of coalescing plates (square ft)

- Q = design flow rate (cfs), i.e., the water quality peak flow rate, Q_{wq}
- E = efficiency of coalescent plates (typically 0.35 to 0.95)
- V_p = upward rise velocity of oil droplet (ft/s)
- H = angle of coalescing plates measured from horizontal (degrees), from 0° to 60°
- A plate angle of 45° to 60° is optimal, allowing sediment to slide off the plate and settle at the bottom of the chamber. At an angle of 0°, the plates would be horizontal and sediment will settle on the plates, reducing its effectiveness.
- Select a likely plate length and width, and then compute the number of plates needed using the following equation.

Equation 4.4.7.7

$$N = \frac{A_P}{W_P L_P}$$

where: N = number of plates required

 A_p = total surface area of coalescing plates (ft²)

- $\dot{W_p}$ = width of plates (ft)
- L_p = length of plates (ft)
- The space between the plates is usually about 1-inch. Placing plates closer together reduces the total required volume, but may instead allow debris such as twigs, plastics or paper to clog the plates.
- Calculate the chamber geometry and volume to contain the coalescing plates. Add a minimum of 1 foot below the plates to account for sediment storage. Add 6 to 12-inches above the plates for oil accumulation. Finally, add 1 foot above the oil accumulation allowance for freeboard.
- The CPI separator shall include a forebay chamber to collect floatable debris and evenly distribute flow if more than one plate is needed. Larger units may have a device to remove and store oil from the water surface, such as a skimmer or vacuum.

Manufactured (i.e., Proprietary) Oil-Grit Separators:

- Several manufacturers of oil-grit separators are identified in the references for this section. Manufactured separators should be selected on the basis of good design, suitability for the desired pollution control goals, durabilty, ease of installation, ease of maintenance, and reliability. The products listed in the reference section and/or shown in schematics are not the only products available, nor should their presence in this manual be construed as an endorsement of these products. They are merely shown as manufactured separators that are known to operate in Tennessee.
- Manufacturers generally provide design methods, installation guidelines, and proof of effectiveness for each application where used. These structures tend to include innovative methods of providing high flow bypass. However, it is incumbent upon the landowner to carefully investigate the suitability and overall trustworthiness of each manufacturer and/or subcontractor.

C. MAINTENANCE ACCESS

• A minimum 20 foot wide maintenance right-of-way or drainage easement shall be provided for the oilgrit separator from a driveway, public or private road. The maintenance access easement shall have a maximum slope of no more than 15% and shall have a minimum unobstructed drive path having a width of 12 feet, appropriately stabilized to withstand maintenance equipment and vehicles. The right-of-way shall be located such that maintenance vehicles and equipment can access the oil-grit separator.

4.4.7.6 Design Example

Basic Data

A conventional oil-grit separator unit is desired for use on a 1 acre parking lot.

- S_p = specific gravity of the petroleum droplet = 0.90
- $V_p = 0.00080$ ft/s for water temperature of 32°F (1 foot in 21 minutes)
- $V_p = 0.00127$ ft/s for water temperature of 60°F (1 foot in 13 minutes)
- Impervious percentage (I) = 90%
- Area (A) = 1 acre
- Time of concentration (t_c) = 6 minutes

Consider the effluent goal as 10 parts per million (ppm) and the design influent concentration is estimated to be 50 ppm (or equivalent to 50 mg/l), so that an oil removal efficiency of 80% is the desired target. From Figure 4-70 below, this can be achieved by removing all oil droplets with diameters of 90 microns or larger.

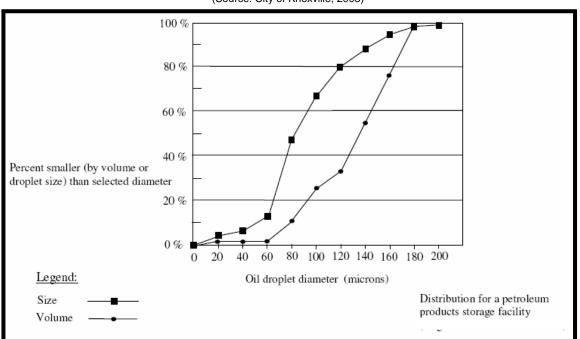


Figure 4-70. Typical Size and Volume Distribution of Oil Droplets (Source: City of Knoxville, 2003)

Step 1: Calculate the Water Quality Peak Flow Rate (Qwg):

(See Chapter 3 for equation information) Compute the Runoff Peak Volume (Q_{wv}) in inches for 1.1-inch rainfall (P = 1.1):

 $Q_{wv} = PRv = 1.1Rv = 1.1(0.015 + (0.0092)(90)) = 0.93$ inches

Compute modified CN:

CN =
$$1000/[10+5P+10 Q_{wv} -10(Q_{wv}^{2}+1.25Q_{wv}P)^{\frac{1}{2}}]$$

= $1000/[10+5(1.1)+10(0.93)-10(0.93^{2}+1.25(0.93)1.1)^{\frac{1}{2}}]$
= 98.4 (Use CN = 98)

For CN = 98 and an estimated time of concentration (t_c) of 6 minutes (0.1 hours), compute the Q_{wq} for a 1.1 inch storm.

 $I_a = 0.041$ (from Table 3-13 in Chapter 3), therefore $I_a/P = 0.041/1.1 = 0.037$.

Using Figure 3-6 in Chapter 3, q_u can be estimated for a Type II storm as approximately 1000 csm/in or more (use 1000 csm/in because of limits in Figure 3-6).

 $q_u = 1000 \text{ csm/in}$, and therefore:

$$Q_{wq} = q_u A Q_{wv} = (1000 \text{ csm/in}) (1.0ac/640ac/mi2) (0.93in) = 1.45 \text{ cfs}$$

Step 2: Size the oil-grit separator:

The allowable horizontal velocity (V_H) is:

$$V_{\rm H}$$
 = 15 $V_{\rm p}$ = 15(0.00080) = 0.012 ft/s

Compute the required depth (D), width (W) and length (L) of the unit (R = 2):

$$\begin{array}{ll} \mathsf{D} & = (\mathsf{Q}_{\mathsf{wq}}/\mathsf{R}\mathsf{V}_{\mathsf{H}})^{0.5} = (1.45/(2)(0.012))^{0.5} = 7.8 \ \mathrm{ft} \\ \mathsf{W} & = \mathsf{R}\mathsf{D} = 2(7.8) = 14.8 \ \mathrm{ft} \\ \mathsf{L} & = (\mathsf{V}_{\mathsf{H}}\mathsf{D})/\mathsf{V}_{\mathsf{p}} = (0.012x7.8)/0.00080 = 117 \ \mathrm{ft} \end{array}$$

The very large size separator size (8' x 16' x 111') computed above is an indication of the fact that oil and water do not separate easily. By careful design of upstream and downstream reaches, it is possible to reduce turbulent flows, drop heights, mixing or swirling stormwater runoff, and excessive velocities. The large unit sized above also indicates the importance of subbasin size to unit size. It is important to keep drainage areas small (i.e., less than 1 acre); this will keep oil-grit separators to manageable sizes.

4.4.7.7 Maintenance Requirements and Inspection Checklist

Note: Section 4.4.7.7 must be included in the Operations and Maintenance Plan that is recorded with the deed.

Regular inspection and maintenance is critical to the effective use of oil-grit (gravity) separators as stormwater best management practices. It is the responsibility of the property owner to maintain all stormwater facilities in accordance with the minimum design standards and other guidance provided in this manual. The local municipality has the authority to impose additional maintenance requirements where deemed necessary.

This page provides guidance on maintenance activities that are typically required for oil-grit (gravity) separators, along with a suggested frequency for each activity. Individual gravity separators may have more, or less, frequent maintenance needs, depending upon a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought) regional hydrologic conditions, and any changes or redevelopment in the upstream land use. Each property owner shall perform the activities identified below at the frequency needed to maintain oil-grit separators properly at all times.

Inspection Activities		Suggested Schedule
•	• Inspect the gravity separator unit for clogging, accumulated debris, sediment, and/or oil and grease. Regularly (at least three months	
Maintenance Activities		
Ма	intenance Activities	Suggested Schedule

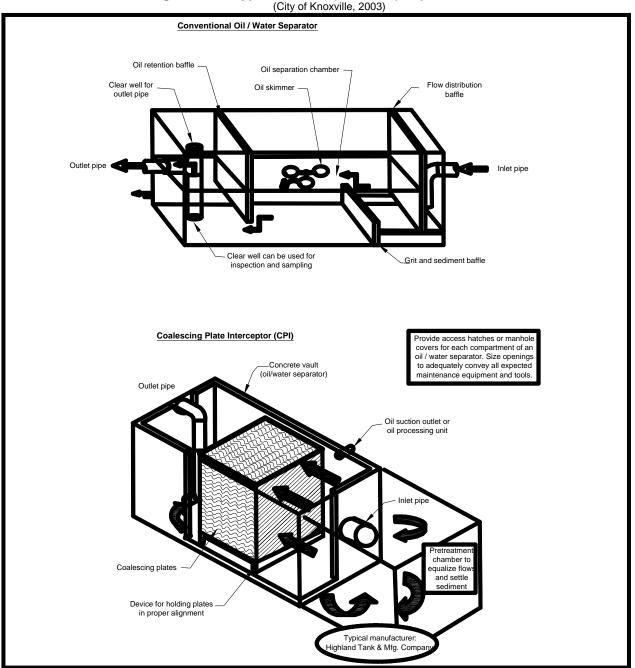
Additional Maintenance Considerations and Requirements

- Additional maintenance requirements for a proprietary system should be obtained from the manufacturer and included in the Operations and Maintenance Plan for the site.
- Consider using a licensed commercial subcontractor, who may have special equipment and abilities to perform periodic cleanout on oil-grit separators.
- Cleanout may require the implementation of confined-space procedures and equipment as required by OSHA regulations, such as non-sparking electrical equipment, oxygen meter, flammable gas meter, etc.
- Proper disposal of oil, solids and floatables removed from the gravity separator must be ensured. Floating oil, grease and petroleum substances removed using special vacuum hoses; should be treated as hazardous waste. Sediments may also contain heavy metals or other toxic substances and should be handled as hazardous waste.
- Removal of sediment depends upon accumulation rate, available storage, watershed size, nearby construction, industrial or
 commercial activities upstream, etc. The sediment composition should be identified by testing prior to disposal. Some
 sediment may contain contaminants for which the Tennessee Department of Environment and Conservation (TDEC) requires
 special disposal procedures. Consult TDEC's Division of Water Pollution Control if uncertain about what the sediments contain
 or if it is known to contain contaminants. Generally, give special attention or sampling to sediments accumulated in industrial
 or manufacturing facilities, fueling centers or automotive maintenance areas, large parking areas, or other areas where
 pollutants are suspected to accumulate.
- There is usually uncertainty about what types of oil or petroleum products may be encountered. A significant percentage of petroleum products are attached to fine suspended solids, and therefore, are not easily removed by settling.
- The local municipality encourages the use of the inspection checklist presented below for guidance in the inspection and maintenance of the oil-grit separator. Additional items should be added to the list, based on the inspection and maintenance information provided by the manufacturer of the separator unit. The local municipality can require the use of this checklist or other form(s) of maintenance documentation when and where deemed necessary in order to ensure the long-term proper operation of the unit. Questions regarding inspection and maintenance should be referred to the local municipality.

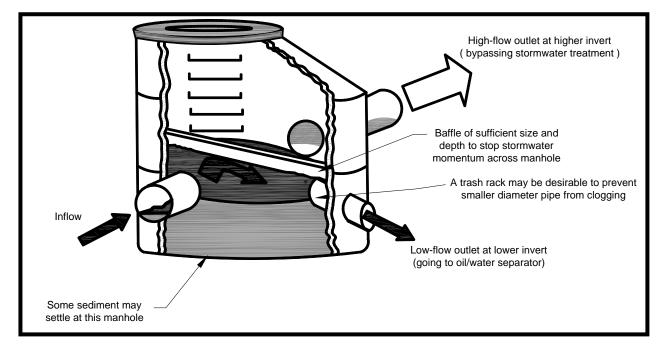
INSPECTION CHECKLIST: OIL-GRIT (OIL/WATER OR GRAVITY) SEPARATOR

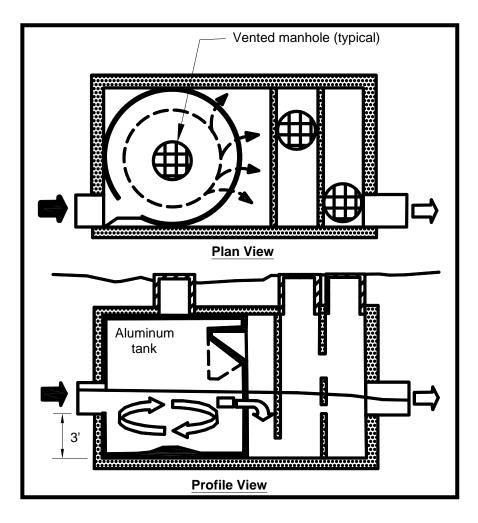
Location:			Owner Change since last inspection?	Υ	Ν
Type of Separator Unit (provide Manufacturer and Unit Name/ID if known):					
Owner Name, Addr	ess, Phone:				
Date:	Time:	Site conditions:			

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Signs of clogging?		
Debris (trash) accumulation?		
Oil accumulation?		
Sediment accumulation?		
Standing water upstream of unit?		
Erosion downstream of unit?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

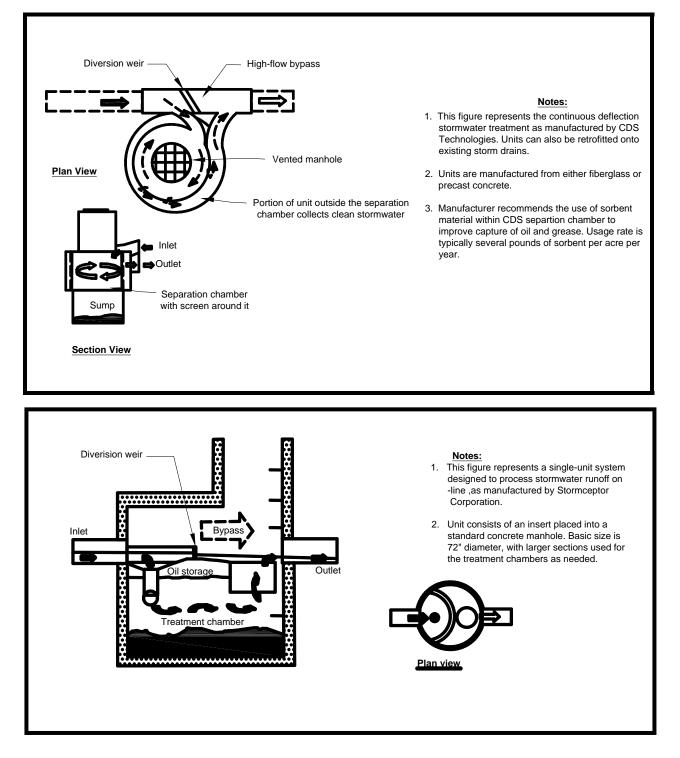

If any of the above inspection items are **UNSATISFACTORY**, list corrective actions and the corresponding completion dates below:

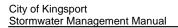
Corrective Action Needed	Due Date

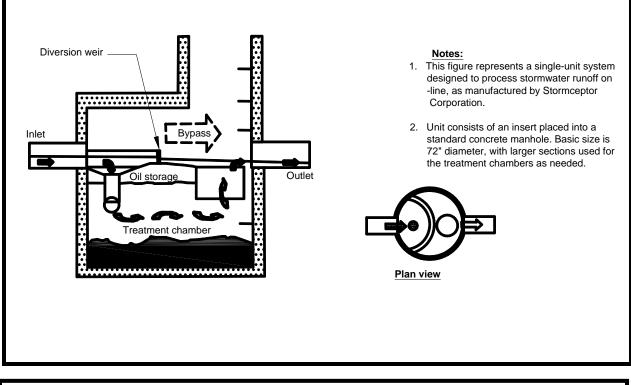

Inspector Signature:_____ Inspector Name (printed)______

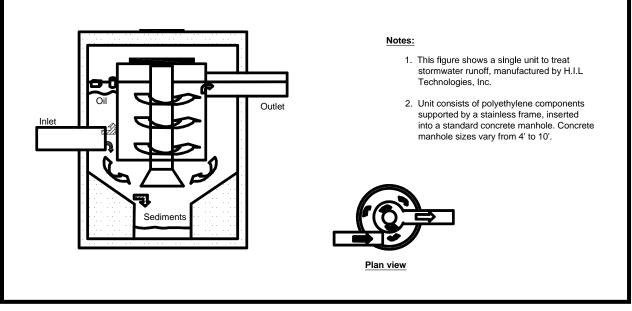


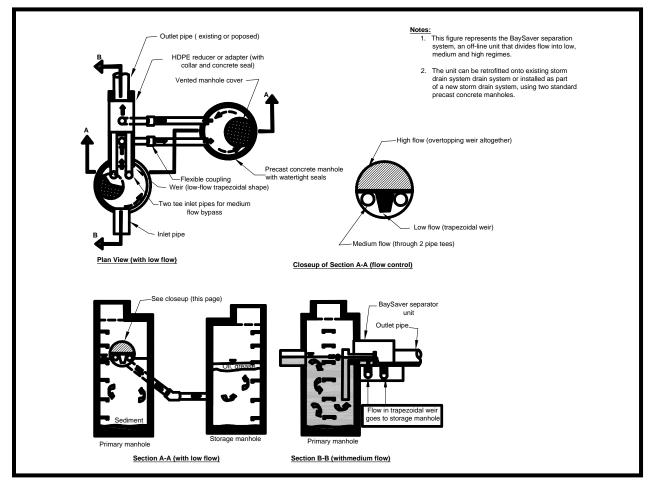
4.4.7.8 Example Schematics











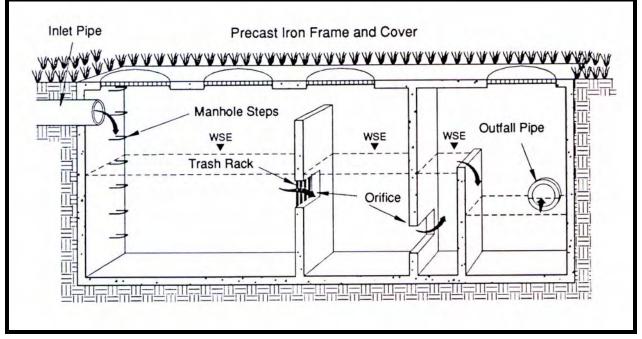

City of Kingsport Stormwater Management Manual

Figure 4-72. Schematic of an Example Gravity (Oil-Grit) Separator (Source: NVRC, 1992)

4.4.7.9 References

- AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.
- AMEC. Metropolitan Nashville and Davidson County Stormwater Management Manual, Volume 4 Best Management Practices. 2006.
- Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 2 Technical Handbook. 2001.
- City of Knoxville. *Knoxville Best Management Practices Manual*. City of Knoxville Stormwater Engineering Division, March 2003.
- Metropolitan Council. *Minnesota Urban Small Sites BMP Manual.* Metropolitan Council Services, St. Paul Minnesota, 2001.

4.4.7.10 Suggested Reading

California Storm Water Quality Task Force. California Storm Water Best Management Practice Handbooks, 1993.

4.4.7.11 Oil/Grit Separator Manufacturers

Highland Tank (CPI unit) Vortechnics, Inc. CDS Technologies Stormceptor Corporation H.I.L. Technology, Inc. BaySaver, Inc. Aquashield, Inc. Environment 21, LLC www.highlandtank.com www.vortechnics.com www.cdstech.com.au/us/ www.stormceptor.com www.hil-tech.com www.baysaver.com www.squashieldinc.com www.env21.com

This page left intentionally blank

Table of Contents

CHAPTER 5 — BETTER SITE DESIGN METHODS (WQv Credits)

5.1	Introduction	. 5-1
5.2	 Water Quality Volume (WQv) Credits 5.2.1 Introduction 5.2.2 Site Planning Using WQv Credits 5.2.3 General Policies for WQv Credits 5.2.4 Credit #1: Natural Area Preservation 5.2.5 Credit #2: Stream and Vegetated Buffers 5.2.6 Credit #3: Use of Vegetated Channels 5.2.7 Credit #4: Impervious Area Disconnection 5.2.8 Credit #5: Environmentally Sensitive Large Lot Neighborhoods 	5-2 5-3 5-4 5-6 5-8 5-9
5.3	Better Site Design Practices5.3.1Overview5.3.2Incorporating Better Site Design Practices into Site Design Process5.3.3Discussion of Better Site Design Practices5.3.4Conservation of Natural Features and Resources5.3.5Low Impact Site Design Techniques5.3.6Reduction of Impervious Cover5.3.7Using Natural Site Features for Stormwater Management5.3.8Better Site Design Examples	5-11 5-12 5-13 5-13 5-19 5-27 5-36
5.4	References	5-46

Chapter 5 - List of Figures

FIGURE #	TITLE	Page #
Figure 5-1	Stormwater Better Site Design Process	5-12
Figure 5-2	Delineation of Natural Areas	5-14
Figure 5-3	Riparian Stream Buffer	5-15
Figure 5-4	Floodplain and Buffer	
Figure 5-5	Impacts of Development on Slopes	
Figure 5-6	Example Soil Map	
Figure 5-7	Example of Lower Impact Site Design Techniques	
Figure 5-8	Preserving the Natural Topography of the Site	
Figure 5-9	Example Subdivision Design for Hilly or Steep Terrain	
Figure 5-10	Example Subdivision Design for Flat Terrain	
Figure 5-11	Guiding Development to Less Sensitive Areas of a Site	
Figure 5-12	Example of Limits of Clearing	
Figure 5-13	Example of Site Footprinting	
Figure 5-14	Open Space Subdivision Site Design Example	
Figure 5-15	Aerial View of an Open Space Subdivision	5-25
Figure 5-16	Examples Cul-de-sac with Landscaped Island, Narrower	
	Residential Street, Landscape Median in Roadway and "Green"	
	Parking Lot with Landscaped Islands	
Figure 5-17	Potential Design Options for Narrower Roadway Widths	
Figure 5-18	Impervious Cover Comparison	
Figure 5-19	Structured Parking at an Office Park	
Figure 5-20	Grass Paver Surface Used for Parking	
Figure 5-21	Reduced Impervious Cover by Using Smaller Setbacks	
Figure 5-22	Examples of Reduced Frontages and Side Yard Setbacks	
Figure 5-23	Nontraditional Lot Designs	
Figure 5-24	Four Turnaround Options for Residential Streets	
Figure 5-25	Parking Lot Stormwater "Island"	5-35
Figure 5-26	Residential Site Design Using Natural Features for Stormwater Management	5-36
Figure 5-27	Use of a Level Spreader with a Riparian Buffer	
Figure 5-28	Example of the Use of Natural Drainageways for Stormwater	
0	Conveyance and Management	5-38
Figure 5-29	Vegetated Swales Instead of Curb and Gutter	
Figure 5-30	Design Paved Surfaces to Disperse Flow to Vegetated Areas	
Figure 5-31a	Example 1 Traditional Residential Subdivision Design	
Figure 5-31b	Example 1 Residential Subdivision Design after Application of	
	Better Site Design Practices	
Figure 5-32a	Example 2 Traditional Residential Subdivision Design	5-43
Figure 5-32b	Example 2 Residential Subdivision Design after Application of	- 10
E '	Better Site Design Practices	
Figure 5-33a	Example 3 Traditional Commercial Development Design	5-44
Figure 5-33b	Example 3 Commercial Development Design after Application of	F 44
	Better Site Design Practices	
Figure 5-34a	Example 4 Traditional Office Park Development	5-45
Figure 5-34b	Example 4 Office Park Development after Application of Better	EAF
	Site Design Practices	3-45

Chapter 5 - List of Tables

TABLE #	TITLE	Page #
Table 5-1	Integration of Site Design Credits with Site Development Process.	5-2
Table 5-2	Summary of WQv Credits	5-3
Table 5-3	Conventional Minimum Parking Ratios	5-30

Chapter 5 - List of Examples

EXAMPLE #	TITLE	Page #
Example 5-1	Nature Area Preservation Credit Calculation	5-6
Example 5-2	Stream and Vegetated Buffer Credit Calculation	5-7
Example 5-3	Vegetated Channels Credit Calculation	5-8
Example 5-4	Impervious Area Disconnection Credit Calculation	5-10

This page left intentionally blank

BETTER SITE DESIGN METHODS (WQv Credits)

5.1 Introduction

Stormwater management begins with the site planning and design process. Development projects can be designed to reduce their impact on watersheds when careful efforts are made to preserve natural areas, reduce impervious cover and better integrate stormwater treatment throughout the proposed development. By implementing a combination of these nonstructural approaches, collectively known as stormwater "better site design" practices, it is possible to reduce the amount of runoff and pollutants that are generated from a site and provide for some nonstructural on-site treatment and control of runoff.

The goals of better site design practices include:

- Managing stormwater (quantity and quality) runoff as close to the point of origin as possible, minimizing the need for large-scale collection and conveyance;
- Preventing stormwater impacts rather than mitigating them;
- Utilizing simple, nonstructural methods for stormwater management that are lower cost and lower maintenance than structural controls;
- Creating a multifunctional landscape; and
- Using hydrology as a framework for site design.

Better site design for stormwater management includes a number of site design techniques that lay-out the natural and proposed man-made site elements in a way that reduces the stormwater impact. This is achieved primarily by reducing the amount of impervious surfaces and utilizing natural features on the site for stormwater management. The aim is to reduce the environmental impact "footprint" of the site while retaining and enhancing the owner/developer's purpose and vision for the site. Many of the better site design concepts can reduce the cost of infrastructure while maintaining, and in some cases increasing, the value of the property.

Reduction of adverse stormwater runoff impacts through the use of better site design should be the **first** consideration of the design engineer. Operationally, economically, and aesthetically, the use of better site design practices offers significant benefits over treating and controlling runoff downstream. Therefore, it is often advantageous to explore and exhaust all options for better site design before considering structural stormwater controls.

The reduction in runoff and pollutants using better site design techniques can reduce peak discharges and runoff volume that need to be conveyed and controlled on a site and, therefore, the size and cost of necessary drainage infrastructure and structural stormwater controls. In some cases, the use of better site design practices may eliminate the need for structural controls entirely. Hence, better site design concepts can be viewed as both a water quantity and water quality management tool. The use of stormwater better site design can also have a number of other ancillary benefits including:

- Reduced construction costs;
- Increased property values;
- More open space for recreation;
- More pedestrian friendly neighborhoods;
- Protection of sensitive forests, wetlands and habitats;
- More aesthetically pleasing and naturally attractive landscape; and,
- Easier compliance with wetland and other resource protection regulations.

Several of the site design practices described in this section provide a calculable reduction in the volume of water required for treatment. Such a volume reduction is henceforth called a "credit". Section 5.2 discusses each credit in detail, provides the credit criteria and calculation rules, and presents examples of their application. A more general discussion of better site design practices is presented in Section 5.3.

5.2 Water Quality Volume (WQv) Credits

5.2.1 Introduction

Nonstructural stormwater control practices are increasingly recognized as a critical feature in every site design. As such, a set of stormwater "credits" has been developed to provide developers and site designers an incentive to implement better site design practices that can reduce the volume of stormwater runoff and minimize the pollutant loads from a site. The credit system directly translates into cost savings to the developer by reducing the size of structural stormwater control and conveyance facilities.

The basic premise of the credit system is to recognize the water quality benefits of certain site design practices by allowing for a reduction in the water quality treatment volume (WQv). If a developer incorporates one or more of the credited practices in the design of the site, the requirement for capture and treatment of the WQv will be reduced. Site designers are encouraged to utilize as many credits as they can on a site. Greater reductions in stormwater storage volumes can be achieved when many credits are combined (e.g., disconnecting rooftops and protecting natural conservation areas).

5.2.2 Site Planning Using WQv Credits

During the site planning process described in Chapter 4 of this manual, there are several steps involved in site layout and design, each more clearly defining the location and function of the various components of the stormwater management system. The integration of WQv credits can be integrated with this process, as generally shown in Table 5-1.

Site Development Phase	Site Design Credit Activity
Initial Site Reconnaissance	 Identify and delineate natural features and potential preservation areas (natural areas, stream buffers, steep slopes, wetlands, springs and sinkholes, etc.). Identify potential areas for better site design and WQv credits.

 Table 5-1. Integration of Site Design Credits with Site Development Process

Site Development Phase	Site Design Credit Activity	
Concept Plan	 Reduce impervious surface area through various better site design techniques. ✓ Preserve natural areas, stream buffers, steep slopes, wetlands, springs, sinkholes and other sensitive areas during site layout. ✓ Identify locations for use of vegetated channels. ✓ Look for areas to disconnect impervious surfaces. Document the use of any WQv credits. 	
Design Plan	 Perform layout and design of credit areas – integrating them into treatment trains. Ensure that WQv and channel protection volume (CPv) are satisfied. Ensure appropriate documentation of WQv credits in accordance with credit criteria specified in this manual. Develop maintenance requirements and documents for stormwater facilities and credited areas. 	
Construction	 Ensure proper protection of preservation areas and buffers. Ensure correct final construction of areas required to achieve credits. 	
Final Inspection	 Prepare and submit As-Built certification, including credited areas as appropriate. Make any necessary corrections to easements on final plats. Ensure credit areas are identified on final plan and plat if applicable. 	

5.2.3 General Policies for WQv Credits

The WQv credits that are available in the local municipalities are listed in Table 5-2, and discussed in detail in the following sections.

Credit	Description
Credit 1: Natural area preservation	Undisturbed natural areas are conserved on a site, thereby retaining their pre-development hydrologic and water quality characteristics.
Credit 2: Managed area preservation	Managed areas of open space are preserved on a site, reducing total site runoff and retaining near pre- development hydrologic and water quality characteristics.
Credit 3: Stream and vegetated buffers	Stormwater runoff is treated by directing sheet flow runoff through a naturally vegetated or forested buffer as overland flow.
Credit 4: Vegetated channels	Vegetated channels are used to provide stormwater treatment.

Table 5-2. Summary of WQv Credits

Credit Description	
Credit 5: Impervious area disconnection	Overland flow filtration/infiltration zones are incorporated into the site design to receive runoff from rooftops and other small impervious areas.
Credit 6: Environmentally sensitive large lot neighborhood	A group of site design techniques are applied to low and very low density residential development.

General requirements and policies applicable to all the WQv credits are as follows.

- 1. WQv credit can only be claimed if the area or practice for which credit is requested conforms to all of the required minimum criteria and conditions stated in Section 5.2 of this manual. Credit will not be given to areas or practices that do not conform to such criteria and conditions. The intent of this policy is to avoid situations that could lead to a credit being granted without the corresponding reduction in pollution attributable to an effective better site design practice.
- 2. WQv credits cannot be claimed twice for an identical area of the site (e.g. claiming credit for stream buffers and disconnecting rooftops over the same site area).
- 3. General better site design practices and techniques performed without regard to the criteria and conditions stated herein, many of which are discussed in Section 5.3, will not be awarded WQv credits. However, it is important to remember that these practices, which reduce the overall impervious area on a site, already implicitly reduce the total amount of stormwater runoff generated by a site, and thus reduce the required WQv.

5.2.4 Credit #1: Natural Area Preservation

Description

A credit may be granted when undisturbed, natural areas are preserved on a site, thereby retaining their pre-development hydrologic and water quality characteristics. Under this credit, a site designer can subtract preserved areas from total site area when computing water quality volume requirements. The area can be used as an undisturbed buffer for sheet flow discharge for site design Credit #3, or for sheet flow of disconnected impervious areas under Credit #5. An added benefit of the use of the natural area preservation credit will be that the post-development peak discharges will be smaller for all design events, and hence other required control volumes and peak discharges (i.e., CPv and the locally regulated storm events) will be reduced due to lower post-development curve numbers or rational formula "C" values.

<u>Rule</u>

Subtract preserved natural areas from the total site area (A) when computing the water quality volume (WQv). The percent impervious (I) is held constant when calculating WQv. Areas qualifying for this credit receive a one-hundred percent (100%) TSS reduction value in pollutant reduction computations.

Design/Implementation Criteria

- The vegetative target for the preserved natural area is undisturbed, mature forest (i.e., trees) with woody shrubs and understory vegetation. Areas that can be characterized as an early successional (i.e., immature) forest, consisting of a combination of grasses, vines, shrubs, tree saplings and possibly even a few mature trees will qualify for the credit.
- 2. It is preferable that vegetation in the preserved natural area be native and non-invasive.
- 3. The City may require (or allow if requested by the property owner) restoration or enhancement of preserved natural areas that do not conform to the vegetative requirements stated in item 1 above at the time of development, in order to receive credit.

- 4. Areas that do not conform to the vegetative target defined in item 1 can be planted with vegetation as appropriate to achieve the vegetative requirements. For these areas, a restoration plan must be submitted that is developed in accordance with the provisions and guidance presented in this manual. Guidance on the natural area restoration plan is provided below. Credit will be granted only after approval of the plan.
- 5. The preserved natural area cannot be disturbed during project construction without prior approval by the City. If it is already disturbed prior to development or redevelopment, it can be restored as a natural area to receive credit.
- 6. The limits of disturbance on the site surrounding the preserved natural area shall be clearly shown on all construction drawings. The area must be staked in the field prior to issuance of a grading permit.
- 7. The preserved natural area shall be protected in perpetuity by deed restrictions, and/or a permanent preservation easement or conservation easement that is recorded with the deed.
- 8. If the area is not publicly owned, the easement must be held by a viable third party such as a land trust, land management company or utility. The purpose of the third party is to provide monitoring and oversight to ensure the perpetual protection of the area in accordance with the requirements of a conservation or preservation area. The organization shall:
 - a. have the legal authority to accept and maintain such easements;
 - b. be bona fide and in perpetual existence;
 - c. have conveyance instruments that contain an appropriate provision for re-transfer in the event the organization becomes unable to carry-out it functions.
- 9. The easement and/or deed restriction must give the City the authority to enforce the easement or deed restriction terms.
- 10. The easement must clearly specify how the natural area vegetation shall be managed and how the boundaries of the area will be marked. (Note: managed turf areas, such as playgrounds and regularly maintained open areas, are not an acceptable form of vegetation management.)
- 11. The preserved natural area shall have a minimum contiguous area requirement of 10,000 square feet.

Natural Area Restoration Plan Requirements

When vegetative restoration or enhancement of a preserved natural area is desired or required to receive the WQv credit, the City may approve, or require, a natural area restoration plan. The plan must be submitted and approved by the City in order to receive the credit. Natural area restoration plans must include the following information:

- 1. A drawing or plan that shows the location of the preserved natural area in relation to the existing or planned development. The plan should display the area proposed for restoration and the limits of disturbance, grubbing and grading (if permitted);
- Best management practices for erosion prevention and sediment control during the vegetation restoration or enhancement (if not already submitted with a stormwater management plan for site development or redevelopment);
- 3. Verbiage and/or drawings indicating the species and density of proposed vegetation. Mortality must be accounted for in the initial planted density of all vegetation;
- 4. Verbiage, guidance, and/or drawings indicating the planting practices that will be utilized;
- 5. A maintenance and monitoring plan for one full growing season; and,
- 6. An implementation schedule.

Example 5-1 presents an example calculation of the preserved natural area credit. The example utilizes the WQv equation presented in Volume II Chapter 3 of this manual.

Example 5-1. Nature Area Preservation Credit Calculation

Proposed site: residential subdivision Site area = 38 acres Preserved natural area = 7 acres Site impervious area = 13.8 acres Rainfall depth for 85% storm event = 1.0 inches

Credit Rule: Subtract the preserved natural area from the total site area when computing WQv. The percent impervious (I) is held constant.

I = site percent imperviousness = (13.8 acres)/(38 acres) * 100% = 36.3%

Runoff coefficient = Rv = 0.015 + 0.0092*(I) = 0.015 + 0.0092*(36.3%) = 0.35Drainage area = total site area – preserved natural area = 38 acres – 7acres = 31 acres

WQv (acre-ft) = P*Rv*A/12Before credit: WQv = (1.0 in)*(0.35)*(38 acres)/12 = 1.11 ac-ftWith credit: WQv = (1.0 in)*(0.35)*(31 acres)/12 = 0.90 ac-ft

The preserved natural area credit resulted in a 19% reduction in the WQv required for the site. The area will also receive a 100% TSS reduction value in the TSS calculation.

5.2.5 Credit #2: Stream and Vegetated Buffers

Description

This credit may be granted when stormwater runoff is effectively treated by a stream buffer or other vegetated buffer. Effective treatment constitutes treating runoff as overland sheet flow through an appropriately vegetated and forested buffer. Under this credit, a site designer can subtract areas draining via overland flow to the buffer from total site area when computing water quality volume requirements. The area draining to the buffer and the buffer itself qualify for credit. In addition, the volume of runoff draining to the buffer can be subtracted from the channel protection volume (CPv).

<u>Rule</u>

Subtract areas draining via overland flow to the buffer from total site area when computing the water quality volume (WQv). The Rv value derived from impervious percentage is held constant when calculating WQv. For stream buffers with a grassed outer zone that have been established and managed in accordance with the provisions of Chapter 6 of this manual, the buffer and areas draining to the buffer qualify for the credit and receive an eighty percent (80%) TSS reduction credit. For buffers that are at least fifty (50) feet in width and are comprised entirely of undisturbed forest vegetation, the buffer itself can qualify for credit #1 as a natural conservation area or if preserved as managed open space can qualify for credit #2, while the areas draining to the buffer qualify for the buffer credit and receive an eighty percent (80%) TSS reduction value.

Design/Implementation Criteria

1. This credit is not applicable if the impervious area disconnection credit (Credit 5) is already being applied to the same area.

- 2. The portion of the buffer that is utilized for stormwater treatment must have a minimum buffer width of fifty (50) feet. If buffer averaging is utilized, portions of the buffer that have a width less than fifty (50) feet are not eligible to receive this credit. Increases in buffer width and/or widths of forest vegetation are strongly encouraged.
- 3. At a minimum, buffers must be designed and managed (in perpetuity) in accordance with the requirements and policies for water quality buffers presented in Chapter 6 of this manual.
- 4. Undisturbed, forested buffers that are at least fifty (50) feet wide can qualify for credit #1 as a natural conservation area. Areas preserved as managed open space can qualify for credit #2.
- 5. Stormwater runoff must enter the buffer as overland sheet flow. A level spreader can be utilized if sheet flow does not occur naturally, or if average contributing slope criteria cannot be met.
- 6. The minimum contributing length of sheet flow shall be ten (10) feet.
- 7. The maximum contributing length of sheet flow shall be two-hundred twenty-five (225) feet, with a maximum of one hundred fifty (150) feet for pervious surfaces, and seventy-five (75) feet for impervious surfaces.
- 8. The average contributing slope shall be three percent (3%) maximum unless a level spreader is used.
- 9. The design of the buffer treatment system must use appropriate methods for conveying flows above the annual recurrence (1-yr storm) event.

Example 5-2. Stream and Vegetated Buffer Credit Calculation

Residential Subdivision Site Area = 38 acres Impervious Area = 13.8 acres Area of undisturbed forested buffer having a 50' width = 2 acres Area Draining to Buffer = 5 acres Rainfall depth for 85% storm event = 1.0 inches

Credit Rule: Subtract the area draining to the buffer when computing WQv. Since this is an undisturbed buffer area at least 50' in width, the area of the buffer can be considered a natural area under credit #1, and therefore can also be subtracted from the total site area when computing WQv. The percent impervious (I) is held constant. I = site percent imperviousness = (13.8 acres)/(38 acres) * 100% = 36.3%Runoff coefficient = Rv = 0.015 + 0.0092*(I) = 0.015 + 0.0092*(36.3%) = 0.35Drainage area = Total site area – buffer area – area draining to buffer Drainage area = 38 acres – 2 acre – 5 acres = 31 acres

Before credit: WQv = P*Rv*A/12 WQv = (1.0)(0.35)(38 acres)/12 = 1.11 ac-ft *With credit:* WQv = (1.0)(0.35)(31 acres)/12 = 0.90 ac-ft

The buffer credit resulted in a 19% reduction in the WQv required for the site. The buffer area will also receive a 100% TSS reduction value in the TSS calculation. The area draining to the buffer will receive an 80% TSS reduction value.

5.2.6 Credit #3: Use of Vegetated Channels

This credit may be granted when vegetated (grass) channels are used for water quality treatment. Site designers will be able to subtract the areas draining to a grass channel and the channel area itself from the total site area when computing water quality volume requirements. A vegetated channel may be able to fully meet the water quality volume requirements for certain kinds of low density residential development (see Credit #6). An added benefit will be that the post-development peak discharges will likely be lower due to a longer time of concentration for the site.

<u>Rule</u>

Subtract the areas draining to a vegetated (grass) channel from total site area when computing the water quality volume (WQv). The percent impervious (I) shall be held constant when calculating WQv. Areas qualifying for this credit receive an eighty percent (80%) TSS reduction value.

Design/Implementation Criteria

- 1. The vegetated channels must be located within a drainage, water quality or preservation easement.
- The credit shall only be applied to residential land uses that have a maximum density of three (3) dwelling units per acre.
- 3. The maximum flow velocity in the channel for the WQv design storm shall be less than or equal to one (1.0) feet per second.
- 4. The minimum residence time for the water quality storm shall be five (5) minutes.
- 5. The bottom width shall be a maximum of six (6) feet. If a larger channel is needed, use of a compound cross-section (i.e., a benched channel) is required.
- 6. The side slopes shall be 3:1 (horizontal:vertical) or flatter.
- 7. This credit will not be granted if engineered grass channels are being used as a limited application structural stormwater control in order to meet the 80% TSS removal goal for WQv treatment.

Example 5-3. Vegetated Channels Credit Calculation

Residential Subdivision Site Area = 38 acres Impervious Area = 13.8 acres Area draining to vegetated channels = 12.5 acres Rainfall depth for 85% storm event = 1.0 inches *Credit Rule: Subtract the area draining to the vegetated channels when computing WQv. The percent impervious (I) is held constant.*

I = site percent imperviousness = (13.8 acres)/(38 acres) * 100% = 36.3%Runoff coefficient = Rv = 0.015 + 0.0092*(I) = 0.015 + 0.0092*(36.3%) = 0.35 Drainage area = Total site area – area draining to vegetated channels Drainage area = 38 acres – 12.5 acres = 25.5acres *Before credit:* WQv = P*Rv*A/12 WQv = (1.0)(0.35)(38 acres)/12 = 1.11 ac-ft *With credit:* WQv = (1.0)(0.35)(25.5 acres)/12 = 0.74 ac-ft

The credit resulted in a 33% reduction in the WQv required for the site. The area draining to the

channel will also receive an 80% TSS reduction value in the TSS calculation.

5.2.7 Credit #4: Impervious Area Disconnection

This credit may be granted when impervious areas are disconnected from the stormwater control system via overland flow filtration/infiltration (i.e., pervious) zones. These pervious areas are incorporated into the site design to receive runoff from rooftops or other small impervious areas (e.g., driveways, small parking lots, etc). This can be achieved by grading the site to promote overland vegetative filtering or by providing infiltration or "rain garden" areas. If impervious areas are adequately disconnected in accordance with the criteria listed below, they can be deducted from the total site area when computing the water quality volume requirements. An added benefit will be that the post-development peak discharges will likely be lower due to a longer time of concentration for the site.

<u>Rule</u>

If impervious areas are adequately disconnected, they can be deducted from the total site area when computing the water quality volume (WQv). The percent impervious area (I) shall be held constant when calculating WQv. Areas qualifying for this credit receive an 80% TSS reduction value in pollutant reduction computations.

Design/Implementation Criteria

- 1. For those areas draining directly to a buffer, either the impervious area disconnection credit or the stream buffer credit can be used, but not both.
- 2. Relatively permeable soils, soil amendments, or placed topsoil (hydrologic soil groups A and B) should be present in the pervious areas that receive discharges from disconnected impervious areas.
- 3. Impervious area disconnection credits will not be given for areas that have, or will have after development, the land uses listed below:
 - a. Developments or facilities that include on-site sewage disposal and treatment systems (i.e., septic systems), raised septic systems, subsurface discharges from a wastewater treatment plant, or land application of biosolids or animal waste;
 - b. Landfills (demolition landfills, permitted landfills, closed-in-place landfills);
 - c. Junkyards;
 - d. Commercial or industrial facilities that store and/or service motor vehicles;
 - e. Commercial greenhouses or landscape supply facilities;
 - f. Agricultural facilities, farms, feedlots, and confined animal feed operations;
 - g. Animal care facilities, kennels, and commercial/business developments or facilities that provide short-term or long-term care of animals; or,
 - h. Other land uses deemed by the local municipality to have the potential to generate higher than normal pollutant loadings.
- 4. The maximum contributing impervious flow path length shall be 75 feet.
- 5. Downspouts shall be at least 10 feet away from the nearest accessible impervious surface (including off site impervious areas) to discourage "re-connections" or flow concentration along a paved edge.
- 6. The disconnection shall drain continuously through a vegetated channel, swale, or filter strip to the property line or to a structural stormwater control.
- 7. The length of the "disconnection" shall be equal to or greater than the contributing length.

- 8. The entire vegetative disconnection shall be on a slope less than or equal to 3 percent.
- 9. The impervious surface area to any one point discharge location shall not exceed 5,000 square feet.
- 10. There must be a note in the final plat that indicates the locations of the disconnected downspouts, and states that such downspouts "shall remain disconnected from the impervious surfaces and shall forever be discharged onto pervious surfaces".

Example 5-4. Impervious Area Disconnection Credit Calculation

Office Building Site Area = 3.0 acres Impervious Area = 1.9 acres Disconnected impervious area = 0.5 acres Rainfall depth for 85% storm event = 1.0 inches

Credit Rule: Subtract the area disconnected impervious areas when computing WQv. The percent impervious (I) is held constant.

I = site percent imperviousness = (1.9 acres)/(3 acres) * 100% = 63.3%Runoff coefficient = Rv = 0.015 + 0.0092*(I) = 0.015 + 0.0092*(63.3%) = 0.60

Drainage area = Total site area – disconnected impervious area Drainage area = $3 \operatorname{acres} - 0.5 \operatorname{acres} = 2.5 \operatorname{acres}$

Before credit: WQv = P*Rv*A/12WQv = (1.0)(0.60)(3 acres)/12 = 0.15 ac-ft

With credit: WQv = (1.0)(0.60)(2.5 acres)/12 = 0.13 ac-ftThe credit resulted in an 13% reduction in the WQv required for the site. The disconnected impervious areas will also receive an 80% TSS reduction value in the TSS calculation.

5.2.8 Credit #5: Environmentally Sensitive Large Lot Neighborhoods

This credit is targeted toward large lot residential developments that implement a number of Better Site Design practices to reduce stormwater discharges from the development as a whole. This credit may be granted when a group of environmental site design techniques are applied to low and very low density residential development (e.g., 1 dwelling unit per acre [du/ac] or lower). The credit can eliminate the need for structural stormwater controls to treat water quality volume requirements. This credit will likely have limited application.

Rule

The requirement for structural controls to necessary to achieve the water quality volume treatment design criteria shall be waived.

Design/Implementation Criteria

1. There are two development density options:

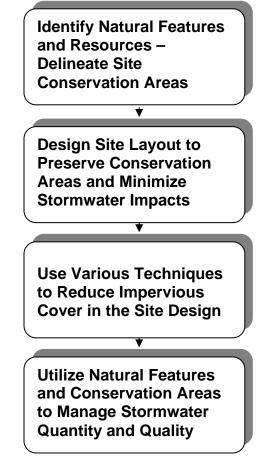
- a. The maximum density of the residential development shall be one (1) dwelling unit per acre, and shall have a total impervious cover footprint (including streets, sidewalks, and other impervious infrastructure) no greater than twelve percent (12%); or,
- b. The maximum density of the residential development shall be one (1) dwelling unit per two

(2) acres, and shall have a total impervious cover footprint (including streets, sidewalks and other impervious infrastructure) no greater than fifteen percent (15%).

- 2. To verify the amount of development in an impervious area, the developer must provide one of the following with the stormwater management plan:
 - a. The impervious footprints for roadways and lots, and the calculated percent imperviousness for the site. This option requires the developer to know the housing footprints and the general locations of each house on each lot so that driveway areas can be measured.
 - b. The impervious footprint for roadways, the maximum expected impervious footprint per lot, and the calculated percent imperviousness for the development. The developer simply needs to know the size range of housing .to be constructed in the development and to justify the per lot imperviousness based upon the housing size range anticipated.
- 3. Restrictive covenants, easements or other legal instrument must be used to limit imperviousness for each lot or development, or to set open space aside as perpetually undeveloped. The legal instrument must be conveyed to each property within the development, and must transfer accordingly with any subsequent property transfers.
- 4. Grass channels shall be used to convey runoff versus curb and gutter.
- 5. Impervious areas shall be disconnected, in accordance with the criteria set forth in Credit #5, to the maximum extent practicable.

5.3 Better Site Design Practices

5.3.1 Overview


The remainder of this chapter has been developed to provide the developer and/or site designer detailed guidance on the use of a number of better site design practices. While the better site design practices presented herein are not required by the City, they are strongly encouraged. A number of these practices can be utilized to gain WQv credits, as discussed previously in this chapter. However, beyond the credits, there is strong incentive to utilize better site design practices that is provided by the use of the WQv approach. That is, the goal of many better site design practices is the reduction of imperviousness which, in the WQv approach, will reduce the volume of stormwater runoff required for treatment.

5.3.2 Incorporating Better Site Design Practices into Site Design Process

Better site design should be done in unison with the design and layout of stormwater infrastructure in attaining the stormwater management goals and criteria discussed in Chapters 1 and 3 of Volume II of this manual. Figure 5-1 illustrates the four major steps of the site design process.

The first step in stormwater better site design involves identifying significant natural features and resources on a site such as undisturbed forest areas, stream buffers and steep slopes that should be preserved to retain some of the original hydrologic function of the site. Next, the site layout is designed such that these conservation areas are preserved and the impact of the development is minimized. A number of techniques can then be used to reduce the overall imperviousness of the development site. Finally, natural features and conservation areas can be utilized to serve stormwater quantity and quality management purposes.

5.3.3 Discussion of Better Site Design Practices

The stormwater better site design practices and techniques covered in this chapter are grouped into four categories and are listed below:

Conservation of Natural Features and Resources

- Preserve undisturbed natural areas
- Preserve riparian (i.e., stream) buffers
- Avoid development and grading in
- floodplains
- Avoid steep slopes
- Minimize development on porous or erodible soils

Lower Impact Site Design Techniques

- Fit design to the terrain
- Locate development in less sensitive areas
- Reduce limits of clearing and grading
- Utilize open space development
- Consider creative development design

Reduction of Impervious Cover

- Reduce roadway lengths and widths
- Reduce building footprints
- Reduce the parking footprint
- Reduce setbacks and frontages
- Use fewer or alternative cul-de-sacs
- Create parking lot stormwater "islands"

Utilization of Natural Features for Stormwater Management

- Use buffers and undisturbed areas
- Use natural drainageways instead of storm sewers
- Use vegetated swales instead of curb and gutter
- Drain rooftop runoff to pervious areas

More detail on each site design practice is provided in the Stormwater Better Site Design Practice Summary Sheets in subsections that follow. These summaries provide the key benefits of each practice, examples and details on how to apply them in site design.

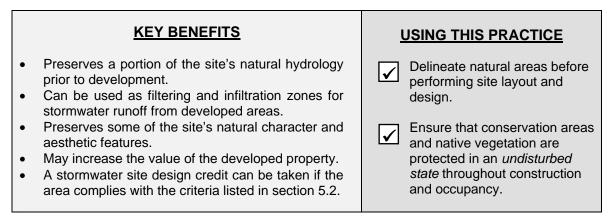
5.3.4 Conservation of Natural Features and Resources

Conservation of natural features is integral to better site design. The first step in the better site design process is to identify and preserve the natural features and resources that can be used in the protection of water resources by reducing stormwater runoff, providing runoff storage, reducing flooding, preventing soil erosion, promoting infiltration, and removing stormwater pollutants. Some of the natural features that should be taken into account include:

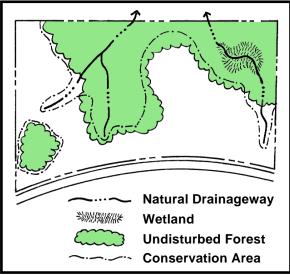
- Areas of undisturbed vegetation;
- Floodplains and riparian areas;
- Ridgetops and steep slopes;
- Natural drainage pathways;
- Intermittent and perennial streams;
- Wetlands;
- Groundwater recharge/well head areas;
- Soils;
- Shallow bedrock or high water table;
- Other natural features or critical areas.

Some of the ways used to conserve natural features and resources described over the next several pages include the following methods, which correspond to the fact sheets that follow:

- # 1. Preserve undisturbed natural areas
- # 2. Preserve riparian buffers
- # 3. Avoid floodplains
- #4. Avoid steep slopes
- # 5. Minimize development on porous or erodible soils


Delineation of natural features is typically done very early in the development process, through an analysis of the features and resources on the site. From this site analysis, the preservation and protection of natural features can be integrated into the vision for the prior to development of the concept plan.

Better Site Design Practice #1: Preserve Undisturbed Natural Areas


Conservation of Natural Features and Resources

Description: Important natural features and areas such as undisturbed forested and vegetated areas, natural drainageways, steep slopes, stream corridors, wetlands, erodible soils and other important site features should be delineated and placed into conservation areas.

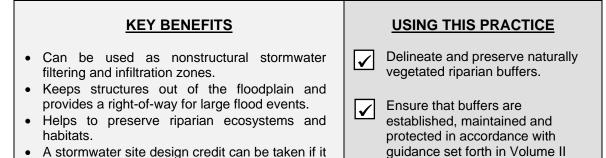
Preserving natural conservation areas such as undisturbed forested and vegetated areas, natural drainageways, stream corridors and wetlands on a development site helps to preserve the original hydrology of the site and aids in reducing the generation of stormwater runoff and pollutants. Undisturbed vegetated areas also promote soil stabilization and provide for filtering, infiltration and evapotranspiration of runoff.

Natural conservation areas are typically identified through a site analysis using maps and aerial/satellite photography, or by conducting a site visit. These areas should be delineated before any site design, clearing or construction begins. When done before the concept plan phase, the planned conservation areas can be used to guide the layout of the site. Figure 5-2 shows a site map with undisturbed natural areas delineated.

Figure 5-2. Delineation of Natural Areas

Preserved natural areas should be incorporated into site plans and clearly marked on all construction and grading plans to ensure that equipment is kept out of these areas and that native vegetation is kept in an undisturbed state. The boundaries of each natural area should be mapped by carefully determining the limit which should not be crossed by construction activity.

Once established, natural areas should be managed by a responsible party that is able to maintain the areas in a natural state in perpetuity. Typically, conservation areas are protected by legally enforceable deed restrictions, conservation easements, and maintenance agreements. If the natural area is utilized for WQv credits, the City requires the use of a responsible third party


to achieve the perpetual preservation of the area. Refer to Credit #1 for more information on the Natural Area Preservation Credit.

Better Site Design Practice #2: Preserve Riparian Buffers

Conservation of Natural Features and Resources

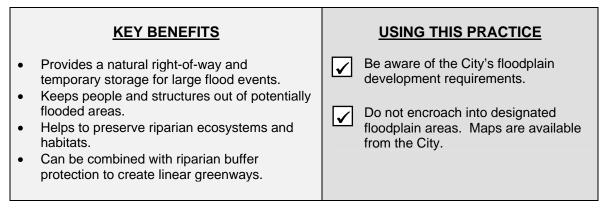
Description: Preserve naturally vegetated buffers along perennial streams, rivers, lakes, and wetlands.

As discussed subsequently in Chapter 6, buffers are a special type of natural conservation area located along a stream, wetland or pond/lake where development is restricted or prohibited. In the City, water quality buffers are required on all waterbodies that can be designated as "community waters" as defined in this manual. Such buffers must be established, maintained and protected in accordance with the provisions of Chapter 6 of this manual. This section simply provides some general information about buffers.

fulfills the criteria listed in section 5.2.

The primary function of buffers is to protect and physically separate a waterbody from future disturbance or encroachment. If properly designed, a buffer can provide stormwater management functions, can act as a right-of-way during floods, and can sustain the integrity of stream ecosystems and habitats. An example of a riparian stream buffer is shown in Figure 5-3. requirements The City's buffer include provisions for a minimum fifty (50) foot dualzone, forested and grassed buffer along streams, and a minimum twenty-five (25) foot one-zone forested or grass buffer around wetlands and ponds/lakes, respectively.

Chapter 6.


In general, forested zones of buffers should be maintained and reforestation should be encouraged where no wooded buffer exists. Chapter 6 of this manual contains provisions and guidance for buffer reforestation (herein called "enhancement"). Proper enhancement of forested areas should include all layers of the forest plant community, including understory shrubs and groundcover, not just trees. Native vegetation is required in forested zones. Impervious areas are prohibited in all areas of the buffer.

Better Site Design Practice #3: Avoid Floodplains

Conservation of Natural Features and Resources

Description: Development in floodplain areas should be avoided to minimize potential property damages and safety risks, and to allow the natural stream corridor to accommodate flood flows.

Floodplains are the low-lying flat lands that border streams and rivers. When a stream reaches its capacity and overflows its channel after storm events, the floodplain provides the natural storage and conveyance areas for these excess flows. When left in a naturally vegetated state with forest, shrubs and other woody vegetation, floodplains can provide a reduction in discharge velocities and peak discharges rates during flood events. Floodplains also play an important role in reducing sedimentation and filtering runoff, and provide habitat for both aquatic and terrestrial life. Development in floodplain areas can reduce the ability of the floodplain to convey stormwater, potentially causing safety problems or significant damage to the site in question, as well as to both upstream and downstream properties. As participant communities of the National Flood Insurance Program (NFIP), the City regulates the use of floodplain areas to minimize the risk to human life as well as to avoid flood damage to structures and property.

As such, all floodplain areas should be avoided on a development site. Ideally, the entire 100-year floodplain should be avoided for clearing or building activities, and should be preserved in a natural undisturbed state where possible. At a minimum, developers should also ensure that their site design complies with the City's floodplain requirements. Floodplain maps and flood elevation profiles can be obtained from the City.

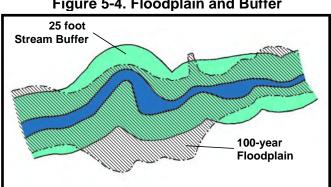
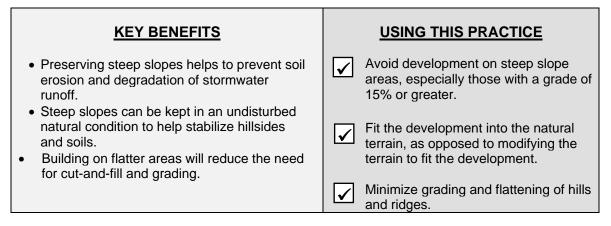


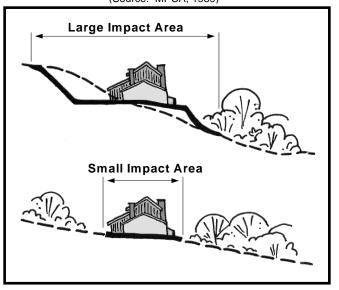
Figure 5-4. Floodplain and Buffer


stream corridors in a natural state and allow for the protection of vegetation and habitat. Depending on the site topography, 100-year floodplain boundaries may lie inside or outside of a preserved riparian buffer corridor, as shown in Figure 5-4.

Better Site Design Practice #4: Avoid Steep Slopes

Conservation of Natural Features and Resources

Description: Development on steep slopes should be avoided due to the potential for soil erosion and increased sediment loading to nearby streams. Excessive grading and flattening of hills and ridges should be minimized.

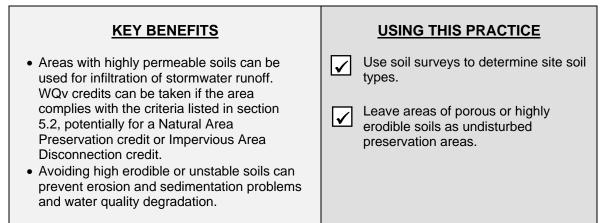


Development in steep slope areas has the potential to cause excessive soil erosion and stormwater runoff during and after construction. Past studies by the Soil Conservation Service (now Natural Resource Conservation Service) and others have shown that soil erosion is significantly increased on slopes of 15 percent or greater. In addition, greater areas of soil and land area are disturbed when development is located on steep slopes as compared to flatter slopes. This is demonstrated in Figure 5-5.

Therefore, development on slopes with a grade of 15 percent or greater should be avoided to limit soil loss, erosion, excessive stormwater runoff, and the degradation of surface water. Excessive grading should be avoided on all slopes, as should the flattening of hills and ridges. Steep slopes should be kept in an undisturbed natural condition to help stabilize hillsides and soils.

On slopes greater than 25 percent, no development, regrading, or stripping of vegetation should be considered unless the disturbance is for roadway crossings or utility construction and it can be demonstrated that the roadway or utility improvements are absolutely necessary in the sloped area.

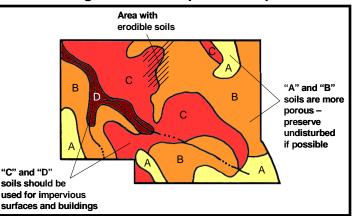
Figure 5-5. Impacts of Development on Slopes (Source: MPCA, 1989)



Better Site Design Practice #5: Minimize Development on Porous and Erodible Soils

Conservation of Natural Features and Resources

Description: Porous soils such as sand and gravels provide an opportunity for groundwater recharge of stormwater runoff and should be preserved as a potential stormwater management option. Unstable or easily erodible soils should be avoided because they are more likely to erode.


Infiltration of stormwater into the soil reduces both the volume and peak discharge of runoff from a given rainfall event, and also provides for water quality treatment and groundwater recharge. Soils with maximum permeability (hydrologic soil group A and B soils, such as sands and sandy loams) allow for the most infiltration of runoff into the subsoil. Thus, areas of a site with these soils should be conserved as much as possible and these areas should ideally be incorporated into undisturbed natural or open space areas. Conversely, buildings and other impervious surfaces should be located on those portions of the site with the *least* permeable soils.

Similarly, areas on a site with highly erodible or unstable soils should be avoided for land disturbing activities and buildings to prevent erosion and sedimentation problems as well as potential future structural problems. These areas should be left in an undisturbed and vegetated condition.

Soils on a development site should be mapped in order to preserve areas with porous soils, and to identify those areas with unstable or erodible soils as shown in Figure 5-6. The City soil surveys can provide a considerable amount of information relating to all relevant aspects of soils. Soil surveys are available from the local National Resource Conservation Service office.

General soil types should be delineated on concept site plans to guide site layout and the placement of buildings and impervious surfaces.

Figure 5-6. Example Soil Map

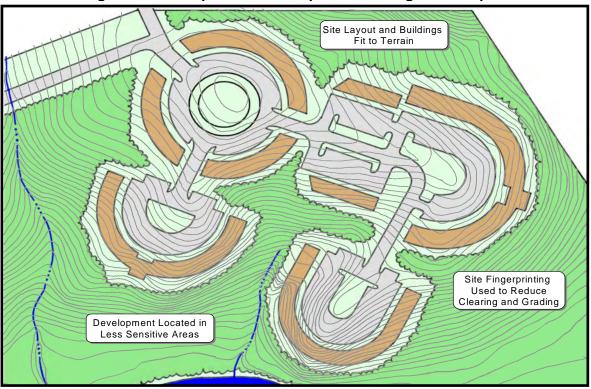
5.3.5 Low Impact Site Design Techniques

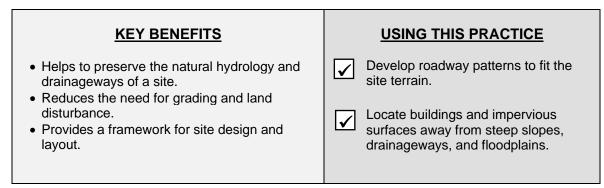
After a site analysis has been performed and conservation areas have been delineated, there are numerous opportunities in the site design and layout phase to reduce both water quantity and quality impacts of stormwater runoff. These primarily deal with the location and configuration of impervious surfaces or structures on the site and include the following practices and techniques covered over the next several pages:

- # 5. Fit the Design to the Terrain
- # 6. Locate Development in Less Sensitive Areas
- #7. Reduce Limits of Clearing and Grading
- #8. Utilize Open Space Development
- #9. Consider Creative Development Design

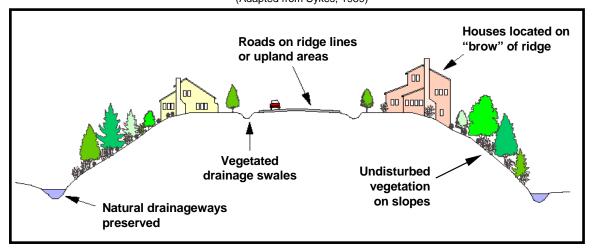
The goal of low impact site design techniques is to lay out the elements of the development project in such a way that the site design (i.e. placement of buildings, parking, streets and driveways, lawns, undisturbed vegetation, buffers, etc.) is optimized for effective stormwater management. That is, the site design takes advantage of the site's natural features, including those placed in conservation areas, as well as any site constraints and opportunities (topography, soils, natural vegetation, floodplains, shallow bedrock, high water table, etc.) to prevent both on-site and downstream stormwater impacts.

Figure 5-7. shows a development that has utilized several low impact site design techniques in its overall layout and design.




Figure 5-7. Example of Lower Impact Site Design Techniques

Better Site Design Practice #6: Fit Design to the Terrain


Low Impact Site Design Techniques

Description: The layout of roadways and buildings on a site should generally conform to the landforms on a site. Natural drainageways and stream buffer areas should be preserved by designing road layouts around them. Buildings should be sited to utilize the natural grading and drainage system and avoid the unnecessary disturbance of vegetation and soils.

All site layouts should be designed to conform with or "fit" the natural landforms and topography of a site. This helps to preserve the natural hydrology and drainageways on the site, as well as reduces the need for grading and disturbance of vegetation and soils. Figure 5-8 illustrates the placement of roads and homes in a residential development.

Figure 5-8. Preserving the Natural Topography of the Site (Adapted from Sykes, 1989)

Roadway patterns on a site should match the terrain. In rolling or hilly terrain, streets should be designed to follow natural contours to reduce clearing and grading. Street hierarchies with local streets branching from collectors in short loops, and cul-de-sacs located along ridgelines help to prevent the crossing of streams and drainageways as shown in Figure 5-9. In flatter areas, a traditional grid pattern of streets or "fluid" grids which bend and may be interrupted by natural drainageways may be more appropriate (see Figure 5-10). In either case, buildings and impervious surfaces should be kept off of steep slopes, away from natural drainageways, and out of floodplains and other lower lying areas. In addition, the major axis of buildings should be oriented parallel to existing contours.

Chapter 5: Better Site Design Methods

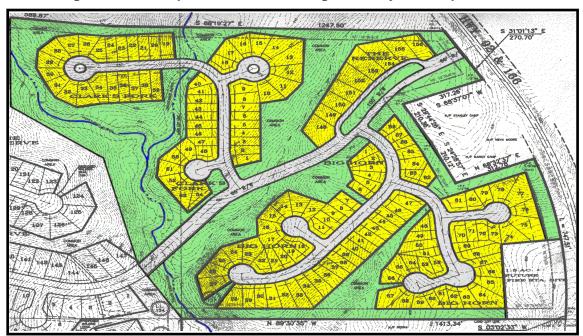
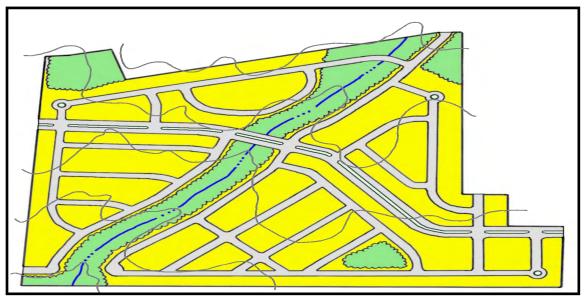
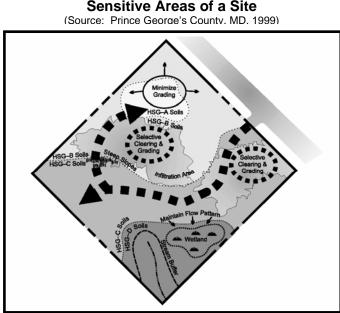



Figure 5-10. Example Subdivision Design for Flat Terrain

Better Site Design Practice #7: Locate Development in Less Sensitive Areas

Description: To minimize the hydrologic impacts on the existing site land cover, the area of development should be located in areas of the site that are less sensitive to disturbance or have a lower value in terms of hydrologic function.

KEY BENEFITS


- Helps to preserve the natural hydrology and drainageways of a site.
- Makes the most efficient use of natural site features for preventing and mitigating stormwater impacts.
- Provides a framework for site design and layout.

USING THIS PRACTICE

Lay out the site design to minimize the hydrologic impact of structures and impervious surfaces.

In much the same way that a development should be designed to conform to terrain of the site, a site layout should also be designed so that the areas of development are placed in the locations of the site that minimize the hydrologic impact of the project. This is accomplished by steering development to areas of the site that are less sensitive to land disturbance or have a lower value in terms of hydrologic function using the following methods:

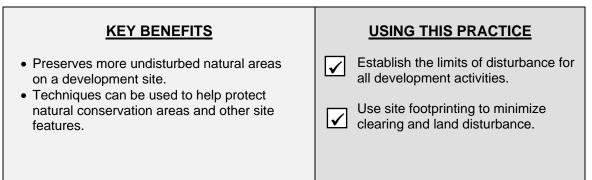
- Locate buildings and impervious surfaces away from stream corridors, wetlands and natural drainageways. Use buffers to preserve and protect riparian areas and corridors.
- Areas of the site with porous soils should left in an undisturbed condition and/or used as stormwater runoff infiltration zones. Buildings and impervious surfaces should be located in areas with less permeable soils.

Figure 5-11. Guiding Development to Less Sensitive Areas of a Site

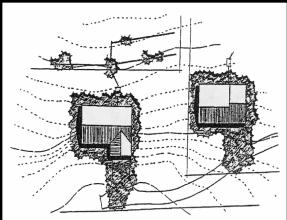
- Avoid construction on areas with steep slopes or unstable soils.
- Minimize the clearing of areas with dense tree canopy or thick vegetation. Ideally, preserve these areas natural conservation areas
- Ensure that natural drainageways and flow paths are preserved, where possible. Avoid the filling or grading of natural depressions and ponding areas.

Figure 5-11 shows a development site where the natural features have been mapped in order to delineate the sensitive areas. Through careful site planning, sensitive areas can be set aside as natural open space areas In many cases, such areas can be used as buffer spaces between land uses on the site or between adjacent sites.

Low Impact


Site Design Techniques

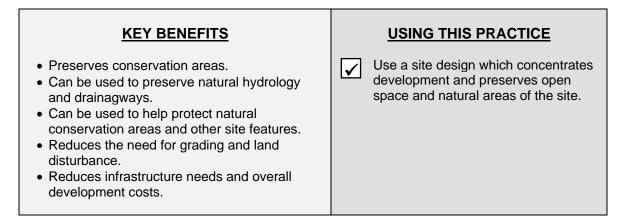
Better Site Design Practice #8: Reduce Limits of Clearing and Grading


Low Impact Site Design Techniques

Description: Clearing and grading of the site should be limited to the minimum amount needed for the development and road access. Site footprinting should be used to disturb the smallest possible land area on a site.

Minimal disturbance methods should be used to limit the amount of clearing and grading that takes place on a development site, preserving more of the undisturbed vegetation and natural hydrology of a site. These methods include:

- Establishing a limit of disturbance (LOD) based on maximum disturbance zone radii/lengths. These maximum distances should reflect reasonable construction techniques and equipment needs together with the physical situation of the development site such as slopes or soils. LOD distances may vary by type of development, size of lot or site, and by the specific development feature involved.
- Using site "footprinting" which maps all of the limits of disturbance to identify the smallest possible land area on a site which requires clearing or land disturbance. Examples of site footprinting are illustrated in Figures 5-12 and 5-13.
- Fitting the site design to the terrain.
- Using special procedures and equipment which reduce land disturbance.


Figure 5-12. Example of Limits of Clearing Figure 5-13. Example of Site Footprinting (Source: DDNREC, 1997)

Better Site Design Practice #9: Utilize Open Space Development

Low Impact Site Design Techniques

Description: Open space site designs incorporate smaller lot sizes to reduce overall impervious cover while providing more undisturbed open space and protection of water resources.

Open space development, also known as *conservation development* or *clustering*, is a better site design technique that concentrates structures and impervious surfaces in a compact area in one portion of the development site in exchange for providing open space and natural areas elsewhere on the site. Typically smaller lots and/or nontraditional lot designs are used to cluster development and create more conservation areas on the site.

Open space developments have many benefits compared with conventional commercial developments or residential subdivisions: they can reduce impervious cover, stormwater pollution, construction costs, and the need for grading and landscaping, while providing for the conservation of natural areas. Figures 5-14 presents an example of the concept of open space site design for a residential area. Figure 5-15 provides an example of an existing open space development.

Along with reduced imperviousness, open space designs provide a host of other environmental benefits that most conventional designs lack. These developments reduce potential pressure to encroach on conservation and buffer areas because enough open space is usually reserved to accommodate these protection areas. Since less land is cleared during the construction process, alteration of the natural hydrology and the potential for soil erosion are also greatly diminished. Perhaps most importantly, open space design reserves 25 to 50 percent of the development site in conservation areas that would not otherwise be protected.

Open space developments can also be significantly less expensive to build than conventional projects. Most of the cost savings are due to reduced infrastructure cost for roads and stormwater management controls and conveyances. While open space developments are frequently less expensive to build, developers find that these properties often command higher prices than those in more conventional developments. Several studies estimate that residential properties in open space developments garner premiums that are higher than conventional subdivisions and moreover, sell or lease at an increased rate.

Once established, common open space and natural conservation areas must be managed by a responsible party able to maintain the areas in a natural state in perpetuity. Typically, the conservation areas are protected by legally enforceable deed restrictions, conservation easements, and maintenance agreements.

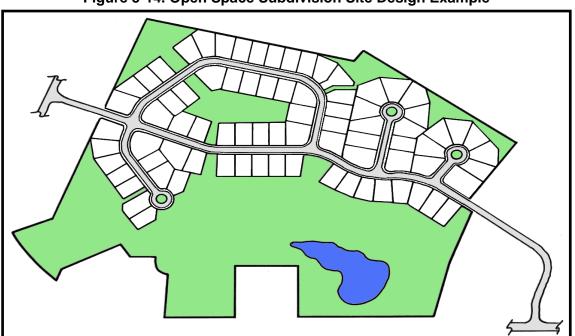


Figure 5-14. Open Space Subdivision Site Design Example

Figure 5-15. Aerial View of an Open Space Subdivision

Better Site Design Practice #10: Consider Creative Development Design

Low Impact Site Design Techniques

Description: Planned Unit Developments (PUDs) allow a developer or site designer the flexibility to design a residential, commercial, industrial, or mixed-use development in a fashion that best promotes effective stormwater management and the protection of environmentally sensitive areas.

KEY BENEFITS

- Allows flexibility to developers to implement creative site designs which include stormwater better site design practices.
- May be useful for implementing an open space development.

USING THIS PRACTICE

Check with the Metropolitan Planning Commission to determine the type and nature of deviations allowed and other criteria for receiving PUD approval.

A Planned Unit Development (PUD) is a type of planning approval available in some communities which provides greater design flexibility by allowing deviations from the typical development standards required by the local zoning code with additional variances or zoning hearings.

The intent is to encourage better designed projects through the relaxation of some development requirements, in exchange for providing greater benefits to the community. PUDs can be used to implement many of the other stormwater better site design practices covered in this Manual and to create site designs that maximize natural nonstructural approaches to stormwater management.

Examples of the types of zoning deviations which are often allowed through a PUD process include:

- Allowing uses not listed as permitted, conditional or accessory by the zoning district in which the property is located
- Modifying lot size and width requirements
- Reducing building setbacks and frontages from property lines
- Altering parking requirements
- Increasing building height limits

Many of these changes are useful in reducing the amount of impervious cover on a development site (see Better Site Design Practices #11 through #16).

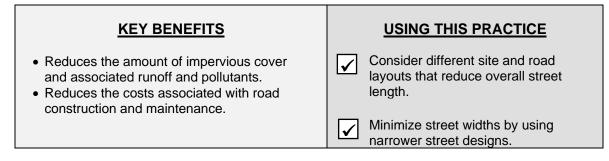
5.3.6 Reduction of Impervious Cover

The amount of impervious cover, i.e. rooftops, parking lots, roadways, sidewalks and other hardened surfaces that do not allow rainfall to infiltrate into the soil, is an essential factor to consider in better site design for stormwater management. Increased impervious cover means increased stormwater generation and increased pollutant loadings.

By reducing the area of total impervious surface on a site, a site designer can directly reduce the volume of stormwater runoff and associated pollutants that are generated by a site. It can also reduce the size and cost of infrastructure for stormwater drainage, conveyance, and control and treatment. Some of the ways that impervious cover can be reduced in a development include:

- # 11. Reduce Roadway Lengths and Widths
- # 12. Reduce Building Footprints
- # 13. Reduce the Parking Footprint
- # 14. Reduce Setbacks and Frontages
- # 15. Use Fewer or Alternative Cul-de-Sacs
- # 16. Create Parking Lot Stormwater Islands

Figure 5-16. shows an example of a residential subdivision that employed several of these principles to reduce the overall imperviousness of the development. The next several pages cover these methods in more detail.


Figure 5-16. Examples (clockwise from upper left): (a) Cul-de-sac with Landscaped Island; (b) Narrower Residential Street; (c) Landscape Median in Roadway; and (d) "Green" Parking Lot with Landscaped Islands

Better Site Design Practice #11: Reduce Roadway Lengths and Widths

Reduction of Impervious Cover

Description: Roadway lengths and widths should be minimized on a development site where possible to reduce overall imperviousness.

The use of alternative road layouts that reduce the total linear length of roadways can significantly reduce overall imperviousness of a development site. Site designers are encouraged to analyze different site and roadway layouts to see if they can reduce overall street length. The length of local cul-de-sacs and cross streets should be shortened to a maximum of 200 ADT (average trips per day) to minimize traffic and road noise so that shorter setbacks may be employed.

In addition, residential streets and private streets within commercial and other development should be designed for the minimum required pavement width needed to support travel lanes, on-street parking, and emergency access. Figure 5-17 shows a number of different options for narrower street designs. Many times on-street parking can be reduced to one lane or eliminated on local access roads with less than 200 ADT on cul-de-sac streets and 400 ADT on two-way loops. One-way single-lane loop roads are another way to reduce the width of lower traffic streets.

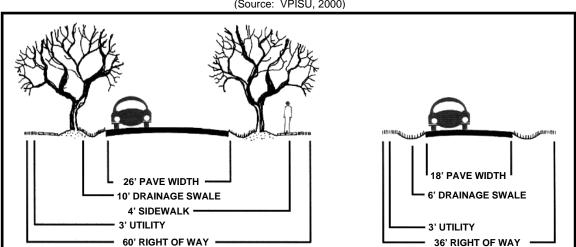
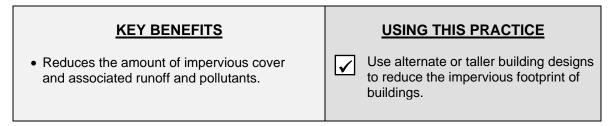
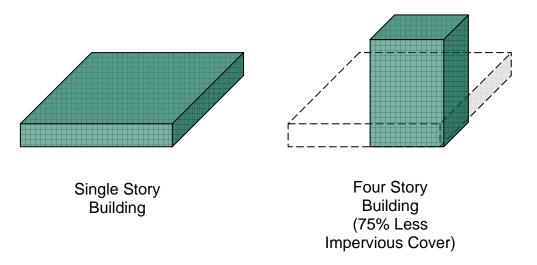


Figure 5-17. Potential Design Options for Narrower Roadway Widths (Source: VPISU, 2000)



Better Site Design Practice #12: Reduce Building Footprints


Reduction of Impervious Cover

Description: The impervious footprint of commercial buildings and residences can be reduced by using alternate or taller buildings while maintaining the same floor to area ratio.

In order to reduce the imperviousness associated with the footprint and rooftops of buildings and other structures, alternative and/or vertical (taller) building designs should be considered. Consolidate functions and buildings, as required, or segment facilities to reduce the footprint of individual structures. Figure 5-18 shows the reduction in impervious footprint from a taller building as opposed to a single story building.

Better Site Design Practice #13: Reduce the Parking Footprint

Description: Reduce the overall imperviousness associated with parking lots by providing compact car spaces, minimizing stall dimensions, incorporating efficient parking lanes, parking decks, and using porous paver surfaces or porous concrete in overflow parking areas where feasible and possible.

	KEY BENEFITS		USING THIS PRACTICE
•	Reduces the amount of impervious		Reduce the number of parking spaces
cover and associated runoff and pollutants generated		Minimize stall dimensions	
		Consider parking structures and shared parking	
		\checkmark	Use alternative porous surface for overflow areas

Setting maximums for parking spaces, minimizing stall dimensions, using structured parking, encouraging shared parking and using alternative porous surfaces can all reduce the overall parking footprint and site imperviousness.

Many parking lot designs result in far more spaces than actually required. This problem is exacerbated by a common practice of setting parking ratios to accommodate the highest hourly parking during the peak season. By determining average parking demand instead, a lower maximum number of parking spaces can be set to accommodate most of the demand. Table 5-3 provides examples of conventional parking requirements and compares them to average parking demand.

Land Use	Parking Requirement		Actual Average
	Parking Ratio	Typical Range	Parking Demand
Single family homes	2 spaces per dwelling unit	1.5–2.5	1.11 spaces per dwelling unit
Shopping center	5 spaces per 1000 ft ² GFA	4.0–6.5	3.97 per 1000 ft ² GFA
Convenience store	3.3 spaces per 1000 ft ² GFA	2.0–10.0	
Industrial	1 space per 1000 ft ² GFA	0.5–2.0	1.48 per 1000 ft ² GFA
Medical/ dental office	5.7 spaces per 1000 ft ² GFA	4.5–10.0	4.11 per 1000 ft ² GFA
GFA = Gross floor area of a building without storage or utility spaces.			

Table 5-3. Conventional Minimum Parking Ratios

Another technique to reduce the parking footprint is to minimize the dimensions of the parking spaces. This can be accomplished by reducing both the length and width of the parking stall. Parking stall dimensions can be further reduced if compact spaces are provided. While the trend toward larger sport utility vehicles (SUVs) is often cited as a barrier to implementing stall minimization techniques, stall width requirements in most local parking codes are much larger than the widest SUVs.

Structured parking decks are one method to significantly reduce the overall parking footprint by minimizing surface parking. Figure 5-19 shows a parking deck used for a commercial development.

Shared parking in mixed-use areas and structured parking are techniques that can further reduce the conversion of land to impervious cover. A shared parking arrangement could include usage of the same parking lot by an office space that experiences peak parking demand during the weekday with a church that experiences parking demands during the weekends and evenings.

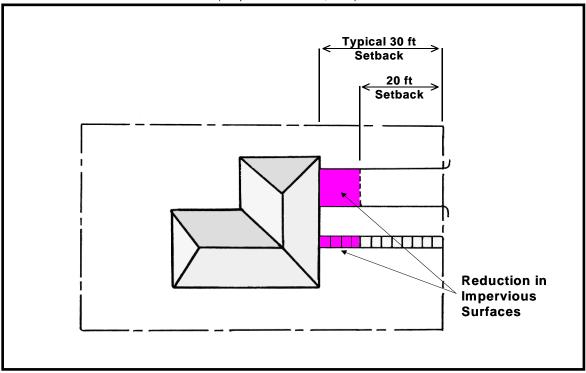
Figure 5-19. Structured Parking at an Office Park

Utilizing alternative surfaces such as porous pavers or porous concert is an effective way to reduce the amount of runoff generated by parking lots. They can replace conventional asphalt or concrete in both new developments and redevelopment projects. Figure 5-20 is an example of porous

Figure 5-20. Grass Paver Surface Used for Parking

pavers used at an overflow lot. Such pavers can also capture and treat runoff from other site areas. However, porous surfaces generally pavement require proper installation and more maintenance than conventional asphalt or concrete. For more specific information using these alternative surfaces, see Section 4.3 of this manual.

Better Site Design Practice #14: Reduce Setbacks and Frontages


Reduction of Impervious Cover

Description: Use smaller front and side setbacks and narrower frontages to reduce total road length and driveway lengths.

KEY BENEFITS	USING THIS PRACTICE
 Reduces the amount of impervious cover and associated runoff and pollutants generated. 	 Reduce building and home front and side setbacks. Consider narrower frontages.

Building and home setbacks should be shortened to reduce the amount of impervious cover from driveways and entry walks. A setback of 20 feet is more than sufficient to allow a car to park in a driveway without encroaching into the public right of way, and reduces driveway and walk pavement by more than 30 percent compared with a setback of 30 feet (see Figure 5-21).

Further, reducing side yard setbacks and using narrower frontages can reduce total street length, which is especially important in cluster and open space designs. Figure 5-22 shows residential examples of reduced front and side yard setbacks and narrow frontages.

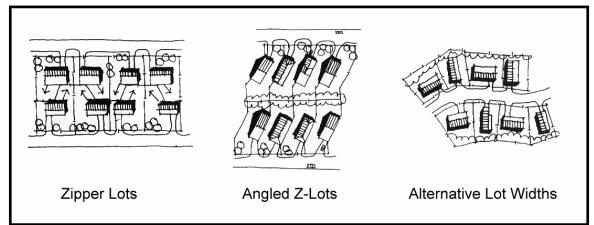

Flexible lot shapes and setback and frontage distances allow site designers to create attractive and unique lots that provide homeowners with enough space while allowing for the preservation of natural areas in a residential subdivision. Figure 5-23 illustrates various nontraditional lot designs.

Figure 5-22. Examples of Reduced Frontages and Side Yard Setbacks

Figure 5-23. Nontraditional Lot Designs (Source: ULI, 1992)

Better Site Design Practice #15: Use Fewer or Alternative Cul-de-Sacs

Description: Minimize the number of residential street cul-de-sacs and incorporate landscaped areas to reduce their impervious cover. The radius of cul-de-sacs should be the minimum required to accommodate emergency and maintenance vehicles. Alternative turnarounds should also be considered.

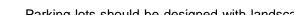
	KEY BENEFITS	USING THIS PRACTICE
•	Reduces the amount of impervious cover and associated runoff and pollutants generated	Consider alternative cul-de-sac designs

Alternative turnarounds are designs for end-of-street vehicle turnarounds that replace cul-de-sacs and reduce the amount of impervious cover created in developments. Cul-de-sacs are local access streets with a closed circular end that allows for vehicle turnarounds. Many of these cul-desacs can have a radius of more than 40 feet. From a stormwater perspective, cul-de-sacs create a huge bulb of impervious cover, increasing the amount of runoff. For this reason, reducing the size of cul-de-sacs through the use of alternative turnarounds or eliminating them altogether can reduce the amount of impervious cover created at a site.

Numerous alternatives create less impervious cover than the traditional 40-foot cul-de-sac. These alternatives include reducing cul-de-sacs to a 30-foot radius and creating hammerheads, loop roads, and pervious islands in the cul-de-sac center (see Figure 5-24).

Sufficient turnaround area is a significant factor to consider in the design of cul-de-sacs. In particular, the types of vehicles entering into the cul-de-sac should be considered. Fire trucks, service vehicles and school buses are often cited as needing large turning radii. However, some fire trucks are designed for smaller turning radii. In addition, many newer large service vehicles are designed with a tri-axle (requiring a smaller turning radius) and many school buses usually do not enter individual cul-de-sacs.

Implementing alternative turnarounds will require addressing local regulations and marketing issues. Communities may have specific design criteria for cul-de-sacs and other alternative turnarounds that need to be modified.



(Source: Schueler, 1995) (Source: Schueler, 1995) 40 ft cul-de sac with 30 ft radius cul-de-sac 60 by 20 ft T-shaped Loop road turnaround

Reduction of Impervious Cover islands.

Better Site Design Practice #16:

Reduces the amount of impervious cover and associated runoff and pollutants generated.

KEY BENEFITS

Create Parking Lot Stormwater "Islands"

- Provides an opportunity for the siting of structural control facilities.
- Trees in parking lots provide shading for cars and are more visually appealing.

Parking lots should be designed with landscaped stormwater management "islands" which reduce the overall impervious cover of the lot as well as provide for runoff treatment and control in stormwater facilities.

Description: Provide stormwater treatment for parking lot runoff using bioretention areas, filter strips, and/or other practices that can be integrated into required landscaping areas and traffic

When possible, expanses of parking should be broken up with landscaped islands which include shade trees and shrubs. Fewer large islands will sustain healthy trees better than more numerous very small islands. The most effective solutions in designing for tree roots in parking lots use a long planting strip at least 8 feet wide, constructed with sub-surface drainage and compaction resistant soil.

Structural control facilities such as filter strips, dry swales and bioretention areas can be incorporated into parking lot islands. Stormwater is directed into these landscaped areas and temporarily detained. The runoff then flows through or filters down through the bed of the facility and is infiltrated into the subsurface or collected for discharge into a stream or another stormwater facility. These facilities can be attractively integrated into landscaped areas and can be maintained by commercial landscaping firms. For detailed design specifications of filter strips, enhanced swales and bioretention areas, refer to Chapter 4. An example of a parking lot stormwater "island" is presented in Figure 5-25.

Figure 5-25. Parking Lot Stormwater "Island"

Chapter 5: Better Site Design Methods

USING THIS PRACTICE

parking lot design.

Integrate porous areas such as landscaped

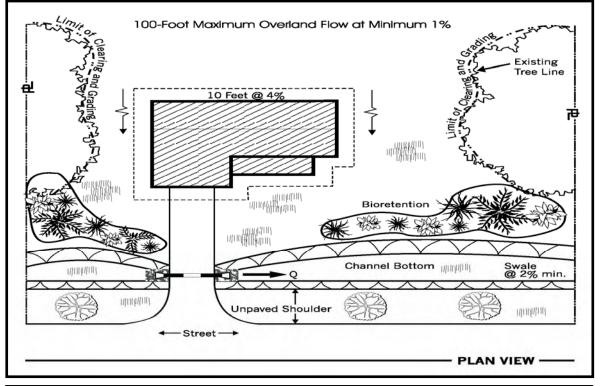
islands, swales, filter strips

and bioretention areas in a

5.3.7 Using Natural Site Features for Stormwater Management

Traditional stormwater drainage design usually ignores and replaces natural drainage patterns, which often results in overly efficient hydraulic conveyance systems. These conveyance systems are overly efficient in that they quickly collect and carry water away from sites rather than allowing water to infiltrate naturally. Conveyance systems are composed of structural stormwater controls that are costly and often require high levels of maintenance to operate properly. The use of natural site features and drainage systems through careful site design can reduce the need and size of structural conveyance systems and controls.

Almost all sites contain natural features which can be used to help manage and mitigate runoff from development. Features on a development site might include natural drainage patterns, depressions, permeable soils, wetlands, floodplains, and undisturbed vegetated areas that can be used to reduce runoff, provide infiltration and stormwater filtering of pollutants and sediment, recycle nutrients, and maximize on-site storage of stormwater. Site design should seek to utilize the natural and/or nonstructural drainage system and improve the effectiveness of natural systems rather than to ignore or replace them. These natural systems typically require low or no maintenance and will continue to function many years into the future.

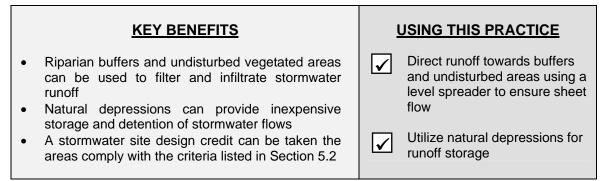

Some of the methods of incorporating natural features into an overall stormwater management site plan include the following practices:

- # 17. Use Buffers and Undisturbed Areas
- # 18. Use Natural Drainageways Instead of Storm Sewers
- # 19. Use Vegetated Swales Instead of Curb and Gutter
- # 20. Drain Runoff to Pervious Areas

Figure 5-26 presents an example of these better site design practices on a residential lot. The following pages cover each practice in more detail.

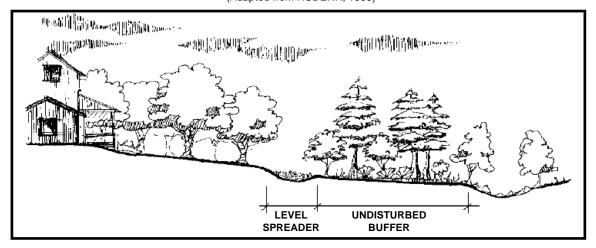
Figure 5-26. Residential Site Design Using Natural Features for Stormwater Management

(Source: Prince George's County, MD, 1999)



Utilization of Natural Features for Stormwater Management

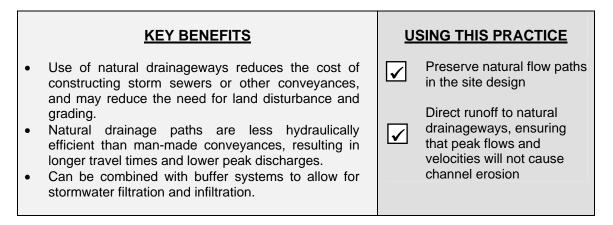
Description: Undisturbed natural areas such as forested preservation areas and stream buffers can be used to treat and control stormwater runoff from other areas of the site with proper design.



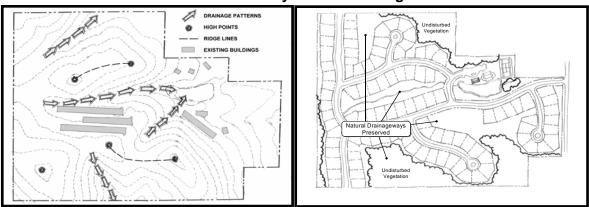
Runoff can be directed towards riparian buffers and other undisturbed natural areas delineated in the initial stages of site planning to infiltrate runoff, reduce runoff velocity and remove pollutants. Natural depressions can be used to temporarily store (detain) and infiltrate water, particularly in areas with porous (hydrologic soil group A and B) soils.

The objective of using natural areas for stormwater infiltration is to intercept runoff before it has become substantially concentrated and then distribute this flow evenly (as sheet flow) to the buffer or natural area. This can typically be accomplished using a level spreader, as seen in Figure 5-27. A mechanism for the bypass of higher flow events should be provided to reduce erosion or damage to a buffer or undisturbed natural area.

Carefully constructed berms can be placed around natural depressions and below undisturbed vegetated areas with porous soils to provide for additional runoff storage and/or infiltration of flows.



Better Site Design Practice #18: Use Natural Drainageways Instead of Storm Sewers


Utilization of Natural Features for Stormwater Management

Description: The natural drainage paths of a site can be used instead of constructed underground storm sewers or concrete open channels.

Structural drainage systems and storm sewers are designed to be hydraulically efficient in removing stormwater from a site. This type of system tends to increase peak runoff discharges, flow velocities, and pollutant loading to downstream waters. Alternatives are natural drainageways and vegetated swales (where slopes and soils permit), which carry stormwater flows to their natural outlets, particularly for low-density development and residential subdivisions.

The use of natural open channels allows for more storage of stormwater flows on-site, lower stormwater peak flows, a reduction in erosive runoff velocities, infiltration of a portion of the runoff volume, and the capture and treatment of stormwater pollutants. It is critical that natural drainageways be protected from higher post-development flows by applying downstream channel protection methods (including the CPv criteria) to prevent erosion and degradation. Figure 5-28 presents an example of the use of natural drainagways for stormwater conveyance.

Figure 5-28. Example of the Use of Natural Drainageways for Stormwater Conveyance and Management

Better Site Design Practice #19: Use Vegetated Swales Instead of Curb and Gutter

Utilization of Natural Features for Stormwater Management

Description: Where density, topography, soils, slope, and safety concerns permit, vegetated open channels can be used in the street right-of-way to convey and treat stormwater runoff from roadways.

KEY BENEFITS

- Reduces the cost of road and storm sewer construction
- Provides for some runoff storage and infiltration, as well as treatment of stormwater
- A stormwater site design credit can be taken the swales comply with the criteria listed in section 5-2

USING THIS PRACTICE

- Use vegetated open channels (enhanced
 - channels (enhanced wet or dry swales or grass channels) in place of curb and gutter to convey and treat stormwater runoff

Curb and gutter storm drain systems allow for the quick transport of stormwater, which results in increased peak flow and flood volumes and reduced runoff infiltration. Curb and gutter systems also do not provide treatment for stormwater that has been polluted from vehicle emissions, pet waste, lawn runoff, and litter.

Open vegetated channels along a roadway (see Figure 5-31) remove pollutants by allowing infiltration and filtering to occur, unlike curb and gutter systems which move water with virtually no treatment. Engineering advances prevent past problems with roadside ditches, which suffered from erosion, standing water and break up at the road edge. Grass channels and enhanced dry swales are two such alternatives. If they are properly installed under the right site conditions, they are excellent methods for treating stormwater on-site. In addition, open vegetated channels can be less expensive to install than curb and gutter systems. Further design information and specifications for grass channels and enhanced swales can be found in Chapter 4 this manual.

Figure 5-29. Vegetated Swales Instead of Curb and Gutter

Better Site Design Practice #20: Drain Runoff to Pervious Areas

Utilization of Natural Features for Stormwater Management

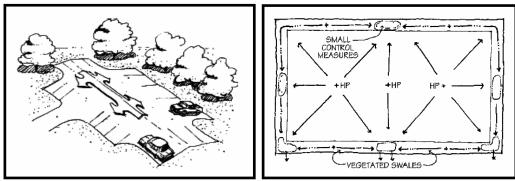
Description: Where possible, direct runoff from impervious areas such as rooftops, roadways and parking lots to pervious areas, open channels or vegetated areas to provide for water quality treatment and infiltration. Avoid routing runoff directly to the structural stormwater conveyance system.

KEY BENEFITS

- Sending runoff to pervious vegetated areas increases overland flow time and reduces peak flows
- Vegetated areas can often filter and infiltrate stormwater runoff
- A stormwater site design credit can be taken if the area complies with the criteria listed in Section 5-2.

USING THIS PRACTICE

- - Minimize directly connected impervious areas and drain runoff as sheet flow to pervious vegetated areas


Stormwater quantity and quality benefits can be achieved by routing the runoff from impervious areas to pervious areas such as lawns, landscaping, filter strips and vegetated channels. Much like the use of undisturbed buffers and natural areas (Better Site Design Practice #17), revegetated areas such as lawns and engineered filter strips and vegetated channels can act as biofilters for stormwater runoff and provide for infiltration in porous (hydrologic group A and B) soils. In this way, the runoff is "disconnected" from a hydraulically efficient structural conveyance such as a curb and gutter or storm drain system.

Some of the methods for disconnecting impervious areas include:

- Designing roof drains to flow to vegetated areas
- Directing flow from paved areas such as driveways to stabilized vegetated areas
- Breaking up flow directions from large paved surfaces (see Figure 5-30).
- Carefully locating impervious areas and grading landscaped areas to achieve sheet flow runoff to the vegetated pervious areas

For maximum benefit, runoff from impervious areas to vegetated areas must occur as sheet flow and vegetation must be stabilized. See Chapters 3 and 7 for more design information and specifications on filter strips and vegetated channels.

5.3.8 Better Site Design Examples (Source: ARC, 2001)

Residential Subdivision Example 1

A typical residential subdivision design on a parcel is shown in Figure 5-31(a). The entire parcel except for the subdivision amenity area (clubhouse and tennis courts) is used for lots. The entire site is cleared and mass graded, and no attempt is made to fit the road layout to the existing topography. Because of the clearing and grading, all of the existing tree cover and vegetation and topsoil are removed dramatically altering both the natural hydrology and drainage of the site. The wide residential streets create unnecessary impervious cover and a curb and gutter system that carries stormwater flows to the storm sewer system. No provision for nonstructural stormwater treatment is provided on the subdivision site.

A residential subdivision employing stormwater better site design practices is presented in Figure 5-31(b). This subdivision configuration preserves a quarter of the property as undisturbed open space and vegetation. The road layout is designed to fit the topography of the parcel, following the high points and ridgelines. The natural drainage patterns of the site are preserved and are utilized to provide natural stormwater treatment and conveyance. Narrower streets reduce impervious cover and grass channels provide for treatment and conveyance of roadway and driveway runoff. Landscaped islands at the ends of cul-de-sacs also reduce impervious cover and provide stormwater treatment functions. When constructing and building homes, only the building envelopes of the individual lots are cleared and graded.

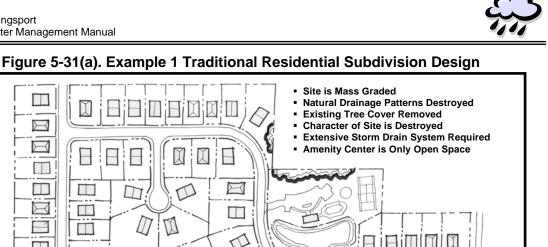
Residential Subdivision Example 2

Another typical residential subdivision design is shown in Figure 5-32(a). Most of this site is cleared and mass graded, with the exception of a small riparian buffer along the large stream at the right boundary of the property. Almost no buffer was provided along the small stream that runs through the middle of the property. In fact, areas within the 100-year floodplain were cleared and filled for home sites. As is typical in many subdivision designs, this one has wide streets that can be used for on-street parking and large cul-de-sacs.

The better site design subdivision can be seen in Figure 5-32(b). This subdivision layout was designed to conform to the natural terrain. The street pattern consists of a wider main thoroughfare that winds through the subdivision along the ridgeline. Narrower loop roads branch off of the main road and utilize landscaped islands. Large riparian buffers are preserved along both the small and large streams. The total undisturbed conservation area is close to one-third of the site.

Commercial Development Example

Figure 4-33(a) shows a typical commercial development containing a supermarket, drugstore, smaller shops and a restaurant on an out-lot. The majority of the parcel is a concentrated parking lot area. The only pervious area is a small replanted vegetation area acting as a buffer between the shopping center and adjacent land uses. Stormwater quality and quantity control are provided by a wet extended detention basin in the corner of the parcel.


A better site design commercial development can be seen in Figure 5-33(b). Here the retail buildings are dispersed on the property, providing more of an "urban village" feel with pedestrian access between the buildings. The parking is broken up, and bioretention areas for stormwater treatment are built into parking lot islands. A large bioretention area, which serves as open green space, is located at the main entrance to the shopping center. A larger undisturbed buffer has been preserved on the site. Because of the bioretention areas and buffer provide water quality treatment, only a dry extended detention basin is needed for water quantity control.

Office Park Example

An office park with a conventional design is shown in Figure 5-34(a). Here the site has been graded to fit the building layout and parking area. All of the vegetated areas of this site are replanted areas. The better site design layout, presented in Figure 5-34(b), preserves undisturbed vegetated buffers and open space areas on the site. The layout has been designed to fit the natural terrain of the site. A modular porous paver system is used for the overflow parking areas.

 \succ

X

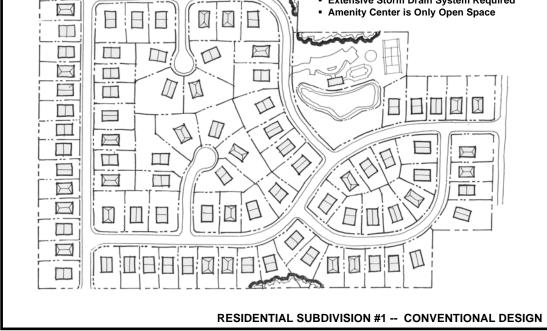


Figure 5-31(b). Example 1 Residential Subdivision Design after Application of **Better Site Design Practices**

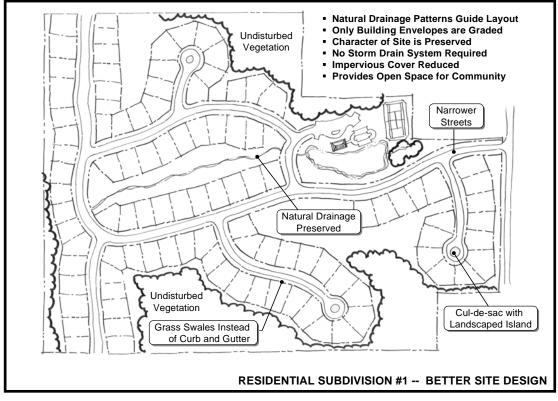


Figure 5-32(b). Example 2 Residential Subdivision Design after Application of Better Site Design Practices

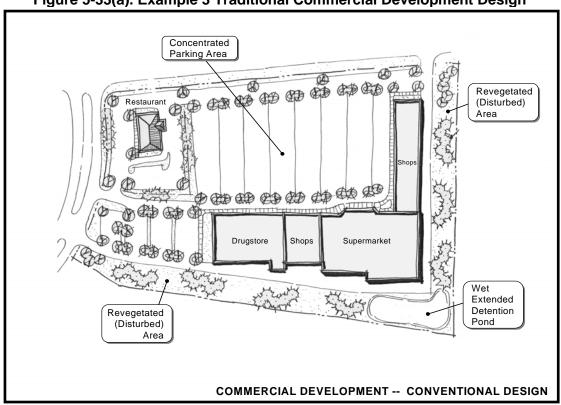
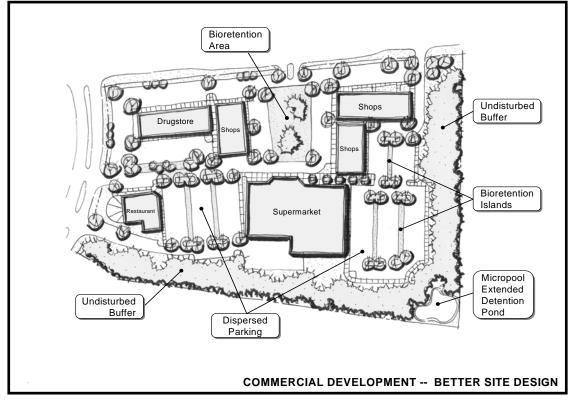



Figure 5-33(a). Example 3 Traditional Commercial Development Design

Figure 5-33(b). Example 3 Commercial Development Design after Application of Better Site Design Practices

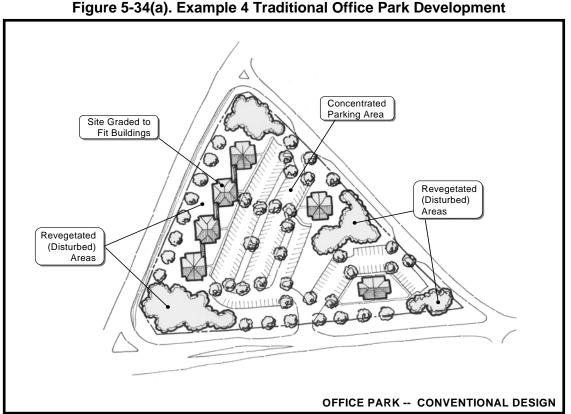
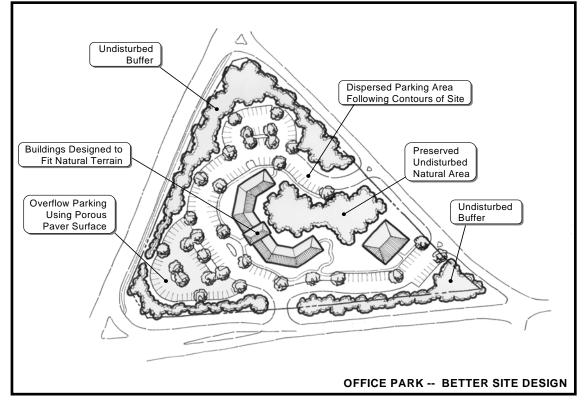



Figure 5-34(b). Example 4 Office Park Development after Application of Better Site Design Practices

5.4 References

AMEC. Knox County Stormwater Management Manual Volume 2, Technical Guidance.

Atlanta Regional Council (ARC). Georgia Stormwater Management Manual Volume 1 Stormwater Policy Guidebook. 2001.

Minnesota Pollution Control Agency (MPCA). Protecting Water Quality in Urban Areas. 1989.

North Carolina Department of Environment and Natural Resources (NCDENR). *Stormwater Management Site Planning.* 1998

Prince George's County, MD. Low-Impact Development Design Strategies, An Integrated Design Approach. 1999

Schueler, T. *Site Planning for Urban Stream Protection*. Prepared by Center for Watershed Protection (CWP). Metropolitan Washington Council of Governments, 1995.

Sykes, R.D. Chapter 31 - Site Planning. University of Minnesota. 1989

Urban Land Institute. Density by Design. 1992.

Virginia Polytechnic Institute and State University (VPISU), College of Architecture and Urban Studies. *Water Sensitive Site Planning*. 2000.

www.stormwatercenter.net Better Site Design: Green Parking. Accessed August 2006.

Table of Contents

CHAPTER 6 — **VEGETATED BUFFERS**

6.1	ntroduction 6-1
6.2	Minimum Requirements 6-1 5.2.1 General 6-1 5.2.2 Applicability 6-2 5.2.3 Width 6-3 5.2.4 Vegetation 6-5 6.2.4.1 Minimum Requirements 6-5 6.2.4.2 Vegetation Restoration 6-6 6.2.4.3 Vegetation Maintenance and Buffer Disturbances 6-7 6.2.4.4 Additional Guidance on Buffer Vegetation and Restoration 6-8 6.2.5 Buffer Use Restrictions 6-9 6.2.5.1 Prohibited Uses 6-9 6.2.5.2 Allowed Uses 6-9 6.2.6.1 During Construction 6-10 6.2.6.2 After Construction 6-10 6.2.6.3 Signage 6-11 6.2.7 Percent TSS Removal 6-11
6.3	Level Spreaders
6.4	Considerations for Buffer Areas6-14
6.5	References

Chapter 6 – List of Figures

FIGURE #	TITLE	Page #
Figure 6-1a	Example Buffer Width Measurement – Top-of-Bank	6-3
Figure 6-1b	Example Buffer Width Measurement – Stream Centerline	6-4
Figure 6-2	Example Buffer Width Measurement - Normal Pool Elevation	6-4
Figure 6-3	Example of a Streamside Vegetated Buffer	6-6
Figure 6-4	Level Spreader	6-12

Chapter 6 – List of Tables

TABLE #	<u>TITLE</u>	<u>Page #</u>
Table 6-1	Level Flow Spreader Dimensions	6-13

This page left intentionally blank

VEGETATED BUFFERS

6.1 Introduction

The purpose of this section is to define requirements for vegetated buffers and to enable cities that use this manual to comply with the requirements of the State of Tennessee's NPDES MS4 permit. In this manual, a vegetated buffer is defined as:

A use-restricted vegetated area of existing vegetation, or enhanced or restored vegetation, that is located along the perimeter of streams, ponds, lakes or wetlands, containing natural vegetation and grasses.

The intent of the vegetated buffers required by this manual is to provide a vegetation anchor for streambanks, pond and lake shorelines and wetland boundaries, thus decreasing sediment loads that originate from eroding banks, and to provide canopy to shade streams, protecting them from thermal impacts. Buffers that are wider than the minimum width required by this manual are able to provide other, greater benefits to streams and other waterbodies such as protection from pollutants carried in stormwater runoff, providing habitat for wildlife, providing areas for runoff control and flood storage. Therefore, incentives to expand buffer widths and vegetation schemes in order to increase the functions provided by the buffers and heighten the overall water quality and flood benefits are provided in this chapter and in Chapter 5.

The policies that are stated in sections 6.2 and 6.3 shall be considered the minimum requirements to comply with the local ordinance that contains the vegetated buffer requirement.

6.2 Minimum Requirements

6.2.1 General

The following requirements shall apply to all vegetated buffers.

- The City may invoke more stringent requirements for vegetated buffers than the minimum standards stated in this chapter for streams designated by the State of Tennessee as impaired or high quality waters, to comply with a State or Federal permit or a Total Maximum Daily Load (TMDL), in areas identified by the local jurisdiction as "hotspot areas", or if the land adjacent to the buffer includes any of the uses or activities listed below:
 - b) Drainfields from on-site sewage disposal and treatment system (i.e., a septic system), subsurface discharges from a wastewater treatment plant, or land application of biosolids or animal waste.
 - c) The storage of hazardous substances or petroleum facilities.
 - d) Raised septic systems or animal feedlot operations.
 - e) Solid waste landfills, junkyards, or other areas identified by the local jurisdiction as pollutant hotspots.
- 2. The vegetated buffer shall be managed and maintained to protect the intended functions of the buffer as stated in this chapter.
- 3. Stormwater runoff that is intended for discharge to the vegetated buffer shall be discharged as

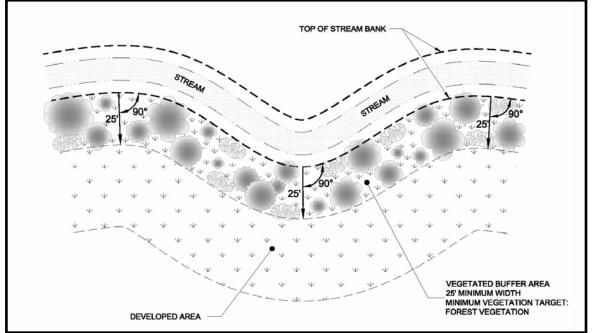
sheet flow. A level spreader must be used to distribute all channelized or shallow concentrated flow that enters the buffer into sheet flow prior to discharging into the buffer area. More information on level spreaders can be found in section 6.3.

- 4. A vegetated buffer area shall be placed into a permanent water quality easement that is recorded with the deed to the parcel and held by the City where the buffer is located.
- 5. Vegetated buffer areas shall be maintained through the declaration of a protective covenant, which must be approved and shall be enforceable by the City where the buffer is located. The covenant shall be recorded with the deed and shall run with the land and continue in perpetuity.
- 6. The vegetated buffer shall be use- and disturbance-restricted, and kept free from clearing, grading, filling, waste dumping, paving and building activities of nearby site development in accordance with the requirements stated in this chapter.
- 7. All areas of the vegetated buffer, including streambanks, shall be left in a stabilized condition upon completion of construction, restoration, enhancement or maintenance activities. No actively eroding, bare or unstable areas shall remain, unless approved by the local juridsiction. No actively eroding, bare, or unstable vertical stream banks shall remain unless the Tennessee Department of Environment and Conservation (TDEC) have determined there is no better alternative. Placement of riprap and other hard armor is only allowed when it has been shown by the property owner that vegetative alternatives, such as bioengineered stabilization, are not feasible.
- 8. The property owner is responsible for obtaining all required State and Federal permits prior to performing work in and around Waters of the State.
- 9. Permanent boundary markers, in the form of signage approved or provided by the City where the buffer is located may be required to mark the limits of the vegetated buffer. The developer or property owner should contact the City to determine if boundary markers are required. If so, such markers shall be installed prior to recording of the final plat, and the issuance of a Certificate of Occupancy. Permanent boundary markers that have been removed or destroyed must be replaced.
- 10. The property owner is responsible for the maintenance and perpetual protection of the buffer area.
- 11. The State of Tennessee requires vegetated buffers during construction activities via provisions contained in the Tennessee Construction General Permit (CGP) or other regulatory permits and processes. The State's requirements may, or may not, align with the policies stated in this chapter. The developer or property owner should check with the City to determine if there are conflicts with any State or Federal buffer requirements.

6.2.2 Applicability

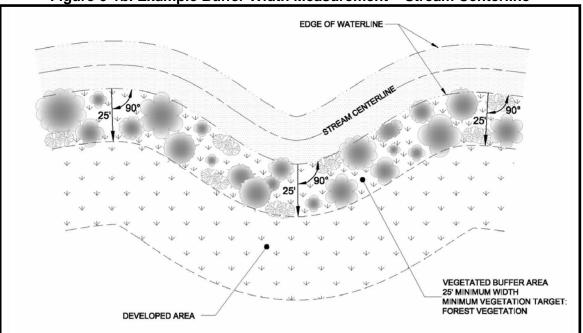
Vegetated buffers are required for all new developments and redevelopments that must submit a Stormwater Management Plan. In general, buffers are not required:

- around the perimeter of ponds that have no known connection to streams, other ponds, lakes or wetlands; or,
- for BMPs that are designed, constructed and maintained for the purposes of stormwater quality and/or quantity control, unless expressly required by the design standards and criteria for the facility that are provided in this manual. However, designed vegetated filter strips that are constructed per the requirements stated in Chapter 4 of this manual can be considered as a pre-treatment measure for stormwater runoff entering such facilities.



6.2.3 Width

Vegetated buffers shall have a minimum width of twenty-five (25) feet. The local jurisdiction may require a wider width for buffers in accordance with policy #1 listed in section 6.1 of this chapter.


The width of the vegetated buffer shall be measured in the following manner:

- For streams, the buffer shall be measured perpendicular from the top-of-bank of the active channel. For those streams that do not have a clearly defined top-of-bank, the buffer shall be measured perpendicular from the centerline of the stream. Examples of these measurements are shown in Figures 6-1a and 6-1b.
- For wetlands, the buffer shall be as measured from the outermost edge of the wetland as determined by USACE, NRCS, or TDEC.
- For ponds and lakes, the buffer shall be measured perpendicular landward from the topographic contour that defines the normal pool elevation, as shown in Figure 6-2.

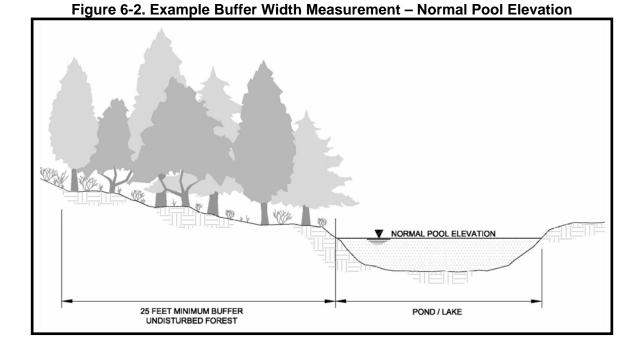
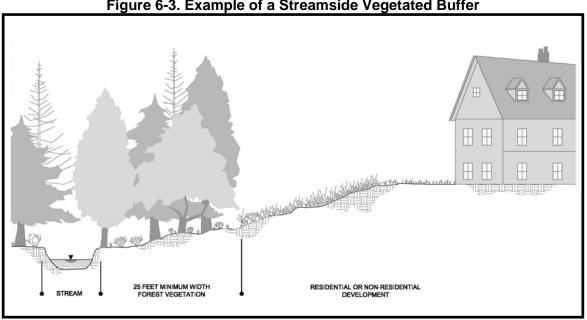


Figure 6-1a. Example Buffer Width Measurement – Top-of-Bank

6.2.4 Vegetation


6.2.4.1 Minimum Requirements

The following minimum requirements shall apply to all vegetated buffer areas.

- 1. The minimum target vegetative cover for vegetated buffers located along streams and around wetlands shall be moderately dense forest with native, non-invasive trees and understory vegetation that provides ground coverage over one-hundred percent (100%) of the buffer area. Understory vegetation must consist of native woody shrubs or dense grasses or a grass/shrub combination. Along streams, trees and other woody vegetation must exist at a density suitable to provide shade for the stream and stabilize stream banks. If the vegetated buffer area can be characterized as an early successional forest at the time of development, consisting of a combination of grasses, vines, shrubs, trees or tree saplings that has the potential to meet the vegetative target upon maturation, vegetative restoration or enhancement of the buffer area (see #6 below) will not be required provided that the vegetation appears healthy, provides adequate ground coverage, and consists largely of native and non-invasive species.
- 2. The minimum target vegetative cover for buffers located around ponds and lakes shall be dense, native grasses that provide vegetative cover for one-hundred percent (100%) of the buffer area.
- 3. Increased use of trees, shrubs and understory vegetation beyond the minimum requirements stated in this section is strongly encouraged to promote infiltration and filtration of stormwater runoff. For maximum benefit to the buffered waterbody, the vegetated buffer area should remain undisturbed and be planted entirely with native vegetation, which will minimize or eliminate the need for vegetative maintenance. Additional information on water quality benefits and incentives to go beyond these minimum requirements is provided in section 6.4.
- 4. Bare spots, areas of erosion, or landscaped areas that contain mulch, rock, or other landscaping materials are prohibited within the vegetated buffer area.
- 5. Impervious materials are prohibited within the vegetated buffer area, except those associated with the approved uses defined in section 6.2.5below.
- 6. Vegetative restoration or enhancement of the buffer area may be required if:
 - a) construction or significant vegetation maintenance is planned in the vegetated buffer area;
 - b) streambank instability or erosion is evident in the area of the buffer; or,
 - c) the vegetation that exists in the buffer area at the time of development or redevelopment of the property does not conform to the vegetative requirements stated in this section, or does not meet the intent of the buffer (i.e., to stabilize streambanks or provide shade) but could reasonably provide these benefits if restoration occurred; or,
 - d) the buffer area has significant populations of non-native and/or invasive plan species; or,
 - e) the buffer area has significant areas of unhealthy, damaged, diseased or dead vegetation.

Figure 6-3 presents and example of meeting a vegetative target for a buffer located on a stream.

Figure 6-3. Example of a Streamside Vegetated Buffer

6.2.4.2 Vegetation Restoration

Vegetative restoration or enhancement of a buffer area that is initiated by the property owner or developer may require prior approval by the City. Alternately, the City may require the property owner to enhance or restore an existing buffer it the buffer area does not meet, or will not meet through natural vegetative succession, the standards necessary for the intended use of the buffer (e.g., providing stream canopy, provide stormwater filtration). All enhancement and restoration efforts shall conform to the following requirements.

- 1. Restoration activities must be performed in accordance with any and all applicable Federal, State and local permits.
- 2. Newly planted vegetation shall be native, riparian species.
- 3. All areas/zones of the buffer being restored must be planted with vegetation that is appropriate to achieve the vegetative targets stated in section 6.2.4.1 above.
- 4. All areas/zones of the buffer being restored must be stabilized against erosion.
- 5. Areas that will consist largely of grasses after restoration must be seeded at a rate sufficient to provide healthy, dense, permanent vegetative cover for 100% of the area within one growing season. Mulch, pebbles, wood chips and other non-vegetative ground cover is not acceptable for buffer restoration.
- 6. Where the removal of vegetation would cause a reduction in the amount of stream canopy by 50% or more, revegetation with native plants is required to provide the cover of the previous canopy at a minimum. For areas where such vegetation removal would cause a reduction in the amount of streambank vegetation, revegetation with native plants is required to return the amount of vegetative cover to its previous state, at a minimum. To reduce the potential for streambank erosion, revegetation measures along streambanks must include sufficient erosion control measures, such as turf reinforcement mats, erosion control blankets, straw wattles, to stabilize the area in the short and long term.
- 7. To increase the chances for the health of the vegetation in the buffer area, the plant species, density, placement, and diversity of the vegetation to be placed in the buffer must be

appropriate for stream, wetland, and pond/lake buffers to achieve the vegetative target that is defined for the buffer in section 6.2.4.1 above, either as restored or through natural succession. Planting and long-term maintenance practices must also be appropriate and properly performed.

- 8. When enhancement or restoration is required by the City, a Buffer Restoration Plan must be prepared and submitted with the Stormwater Management Plan. The Buffer Restoration Plan shall contain the following contents, at a minimum.
 - b) Basic application information, including:
 - i) a description of the need for the buffer restoration;
 - ii) the dates of the development of the buffer enhancement plan and date of any revisions;
 - iii) location map showing the property in relation to adjacent properties, streets, and nearby watercourses;
 - iv) name, address, email address, and phone number of property owner;
 - v) name, address, email address, and phone number of the applicant, if different from the property owner.
 - c) If the Buffer Restoration Plan is submitted as a component of a Stormwater Management plan, a drawing or plan that shows the location of the buffer(s) in relation to the existing or planned development and to any streams, wetlands, lakes or ponds. The plan should display the area proposed for restoration, showing the limits of disturbance, grubbing, and grading (if permitted).
 - d) Best management practices for erosion prevention and sediment control during the vegetation restoration or enhancement.
 - e) Any existing or proposed stream crossings or buffer encroachments. Copies of state and/or federal permits allowing the crossing or encroachment, if applicable.
 - f) Description and/or drawings indicating the species and density of proposed vegetation, in accordance with the vegetation requirements stated in this chapter. Vegetation mortality must be accounted for all planting densities that are proposed.
 - g) Descriptions and/or drawings indicating the planting practices that will be employed.
 - h) Maintenance and monitoring plan for one full growing season, including specification of proposed watering plans and schedule.
 - i) An implementation schedule for buffer restoration activities. This schedule should be presented in relation to other site grading/construction activities, if such other activities will occur during buffer restoration.
 - j) One (1) year after completion of the restoration or enhancement activity, the portion of the construction bond that is covered under the Buffer Restoration Plan can be released provided that the enhancement area has been restored or enhanced as required, that soils within the buffer area are stable, and that buffer vegetation is healthy.

6.2.4.3 Vegetation Maintenance and Buffer Disturbances

Maintenance of the vegetation located in a buffer area can be performed without prior approval by the City. Management and maintenance of the vegetated buffer includes specific limitations on the alteration of vegetated conditions. The following vegetation management activities are allowed, provided that soil disturbance is minimized and the intended functions of the vegetated buffer area are preserved:

- The removal or planting of individual trees or vegetation as needed to maintain the overall health and function of vegetation in the buffer area. The removal of non-native, nuisance vegetation, or the removal of individual trees that are in danger of falling and causing damage to dwellings or other structures, are dead or diseased, or have been heavily damaged by storms. Root wads or stumps should be left in place, where feasible, to maintain soil stability.
- 2. The limited pruning of trees and woody vegetation provided that the health and function of the vegetated buffer area are not compromised.
- 3. Minor landscaping to repair erosion, bare spots, or sparsely-vegetated areas.
- 4. Infrequent ground cover maintenance activities such as weed-eating. Such activities should be minimized and must not result in the removal (either temporary or permanent) of ground cover vegetation.
- 5. Disturbances necessary for the construction of allowable uses, as defined in section 6.2.5. Approval of a Buffer Restoration Plan by the City is required prior to any construction activity in a vegetated buffer area.
- 6. Disturbances as required to establish and/or restore buffer areas in accordance with section 6.2.4.2.
- 7. Grubbing, clearing, bush-hogging, and other mass vegetation removal activities are prohibited without prior approval of a Buffer Restoration Plan. When the removal of vegetation would cause a reduction in the amount of stream canopy by fifty percent (50%) or more, re-vegetation with native plants is required to the entire amount of the canopy that was removed. For areas where such vegetation removal would cause a reduction in the amount of stream bank vegetation, re-vegetation with native plants is required to the native plants is required to meet the previous coverage.
- 8. The application of herbicides, pesticides, and fertilizers in a buffer area is prohibited.

6.2.4.4 Additional Guidance on Buffer Vegetation and Restoration

More detailed guidance and information on streambank and buffer restoration techniques, plants and planting guidelines and native plant species can be found from the following sources:

- Tennessee Valley Authority's Riparian Restoration webpage, located at <u>www.tva.com/river/landandshore/stabilization/index.htm</u>
- Tennessee Valley Authority's Native Plant Finder webpage, located at <u>www.tva.com/river/landandshore/stabilization/plantsearch.htm;</u>
- Banks and Buffers: A guide to selecting native plants for streambanks and shorelines. Contact information to obtain this publication is provided at www.tva.com/river/landandshore/stabilization/websites.htm;
- Knoxville-Knox County Tree Conservation & Planting Plan, published by MPC and available at <u>www.knoxmpc.org</u>
- the Tennessee Exotic Plant Pest Council website, located at www.tneppc.org; and
- the Natural Resource Conservation Service (NRCS).

The introduction or propagation of plants considered as nuisance, non-native (also termed "exotic") and/or invasive plant species, such as honeysuckle, privet, ivy and kudzu is strongly discouraged near the buffer area. In addition, such plants are prohibited from being planted in a buffer area, as part of restoration or maintenance. Guidance on non-native species in Tennessee can be found at the Tennessee Exotic Plant Pest Council website, located at www.tneppc.org.

6.2.5 Buffer Use Restrictions

6.2.5.1 Prohibited Uses

The following uses or activities are prohibited within vegetated buffers:

- 1. Spraying, filling, dumping, and animal grazing;
- 2. Use, storage, or application of pesticides, herbicides, fertilizers, or household or commerciallygenerated wastes;
- 3. Concentrated animal lots or kennels;
- 4. The storage of motorized vehicles, except for temporary parking associated with maintenance of the buffer or allowed use areas, or emergency use;
- 5. Creation of impervious surfaces, except for those included in approved stream crossings or other approved uses.
- 6. Other uses as deemed by the local jurisdiction to have the potential to generate higher-thannormal pollutant loadings.

6.2.5.2 Allowed Uses

The following structures or uses are allowed in the vegetated buffer area, subject to the prior approval of the local jurisdiction and the specific design or maintenance features listed for each approved use.

- 1. Stream crossings, water access structures (i.e., docks), and utilities/utility access areas. The following requirements shall apply to such areas:
 - b) An analysis must be conducted to show that there is no economically-feasible alternative to the proposed use.
 - c) The right-of-way or access area width and length must be the minimum needed to allow maintenance access and installation.
 - d) The angle of a buffer crossing shall be perpendicular (with up to 15% deviation off perpendicular allowance) to the stream or buffer in order to minimize clearing requirements. A deviation from perpendicular up to 15 degrees may be allowed through administrative approval from the City if it is determined that there is no other viable alternative.
 - e) The number of buffer crossings shall be minimized within each development, and no more than one (1) crossing is allowed for every 1,500 feet linear feet of vegetated buffer. Additional crossings may be approved by the City if justified by traffic, safety, or access issues. Where possible, the design of roadways and lots within a development should be arranged so that all streams are either to the rear or side of individual lots, and never along the front of lots.
- 2. Stream restoration projects, facilities and activities;
- 3. Conservation uses, wildlife sanctuaries, nature preserves, forest preserves, fishing areas, and passive use areas such as parks, trails, greenways, picnic areas, and yards as long as they do not have impervious surfaces. Passive use areas are defined as private or public use areas that do not require hardened, impervious surfaces to be constructed. Passive recreation areas do not include golf courses, ball fields that require the construction of impervious surfaces or the maintenance of open soil areas (such as baseball infields), picnic shelters or parking. The following requirements shall apply to all conservation and passive use areas:

- a) The removal of trees and woody understory vegetation shall be minimized and shall under no circumstances affect the ability of the buffer to function as intended.
- b) Asphalt, concrete, packed gravel, and other impervious paving surfaces are prohibited.
- c) Picnic facilities shall limited to picnic benches and trash receptacles. Roofed enclosures, paved or landscaped picnic pads, and grills/fire pits are prohibited.
- d) Educational signs about the buffer area, vegetation, or function are encouraged in picnic areas and pathways that are placed in vegetated buffers located in common areas or on public lands. The City may assist property owners with such signage (see section 6.2.6.3 for more information).
- e) Where traffic safety or access to allowed use areas as defined above would be negatively affected by the presence of trees and wood vegetation required by this chapter, areas immediately-surrounding allowed use areas shall be vegetated with dense, native grasses.

6.2.6 **Protection of Vegetated Buffers**

Buffers must be protected prior to, during, and perpetually after construction in order to prevent stream bank erosion and protect the stream from thermal impacts. Buffer areas must remain protected from land disturbance, vegetation removal, construction of impervious surfaces, and discharges of sediment and other construction-related wastes during development activities.

6.2.6.1 During Construction

The following requirements shall be applied during clearing, grading and construction of the new development or redevelopment:

- 1. Unless otherwise provided herein, all areas that are required to be designated as vegetated buffers after construction has been completed shall remain protected from land disturbance, vegetation removal, construction of impervious surfaces, and discharges of sediment and other construction-related wastes during development activities.
- 2. Vegetated buffers shall be clearly identified on all construction drawings, and marked with the statement "Vegetated Buffer Area. Do not disturb."
- 3. During construction vegetated buffers must be cordoned-off with a highly visible barrier, such as orange construction fencing, and cannot be encroached upon or disturbed unless they are being established, restored, or enhanced. Encroachments and disturbances caused by buffer enhancement and restoration efforts shall be minimized to the maximum degree possible.
- 4. Where the requirements of this chapter and another regulation, such as the State of Tennessee General NPDES Permit for Discharges of Stormwater Associated with Construction Activities, conflict or overlap, the regulation that is more restrictive or imposes higher standards or requirements shall prevail.

6.2.6.2 After Construction

Once construction has ceased on a project, the vegetated buffer must be maintained in accordance with the recorded Covenants for Maintenance of Stormwater Facilities and Best Management Practices. In order to provide for long-term protection and maintenance, it is required that the water quality buffer be protected in perpetuity by placing the buffer in a permanent water quality or other easement that is recorded with the property's deed. The property owner is responsible for the maintenance and protection for the buffer area.

6.2.6.3 Signage

Permanent boundary marker signs may be required by the City prior to recording the final plat or issuance of a Certificate of Occupancy to ensure that adjacent property owners are aware of the buffer. Further, replacement of such boundary markers that have been removed or destroyed may be required by the City. The following general policies shall apply to buffer boundary markers:

- Generally, buffer boundary markers must be located on the lot lines at the intersection of the landward edge of the buffer, and at other locations which will approximately delineate the buffer boundary. For single lot site developments, markers, if required, shall be posted every 100 feet along the buffer boundary. For subdivisions where multiple lots are located along the buffer, it is recommended that a buffer boundary marker be located at the intersection of every other lot line with the landward edge of the buffer.
- 2. Buffer boundary markers shall include the statement "Vegetated Buffer Area. Do not disturb."
- 3. Where possible, the markers should be mounted on a tree larger than three (3) inches in diameter. Where it is not possible to mount the marker to a tree, a treated wood, metal, or plastic signpost must be used. The post must extend below the ground surface at least twenty-four (24) inches.
- 4. The boundary markers must be mounted between four (4) and six (6) feet above the ground surface.

6.2.7 Percent TSS Removal

Vegetated buffers that have been established, restored, and/or preserved in accordance with the requirements of this Chapter can be used towards the required, calculated percent TSS removal of stormwater runoff that discharges through the buffer as sheet flow. Policies and guidance associated with the calculation of percent TSS removal are contained in Chapter 3 of this manual. Per Chapter 5, section 5.2.6, of this manual, sheet flow to vegetated buffers that meet the minimum requirements can receive an 80% TSS removal calculated value.

6.3 Level Spreaders

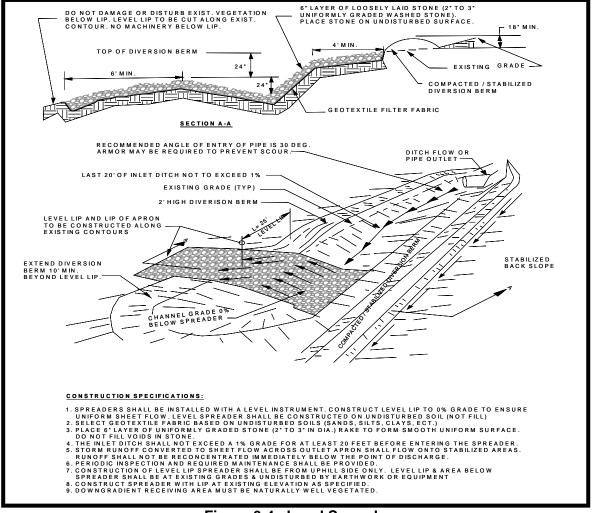
6.3.1 General

Level spreaders are structures that are designed to dissipate energy of concentrated flow and distribute it as sheet flow over a large surface area. For vegetated buffers, they are used to maintain the function of buffers by transitioning concentrated flows of stormwater runoff into sheet flow. Buffers are most effective when shallow sheet flow is discharged to them. This creates a shallow flow that has a high surface contact area, increasing infiltration and filtration, and reducing the potential for soil erosion.

6.3.2 Design Standards

Level spreaders are simple structures that consist of the following elements:

- A pipe, ditch, or swale through which concentrated flow enters the spreader;
- An energy dissipater that slows the water;
- A level lip provided by the construction of a berm, concrete chute, or other permanent material or a shallow linear trench. The purpose of this component is to distribute runoff perpendicularly over the lip or through the trench at the same depth for the entire length of the spreader.



Level spreaders are required where concentrated flows from upstream stormwater outfalls or facilities would discharge into the buffer, or where the slope of the land draining to the buffers has more than a three percent (3%) slope.

A level spreader is a relatively low cost structure that is used for two primary applications:

- to disperse shallow concentrated or channelized stormwater runoff from impervious areas to a water quality BMP, such as a filter strip, water quality or other buffer, or other vegetated area; or,
- for outlet diversion (i.e., the release small volumes of concentrated flow from diversions when conditions are suitable).

Engineering detail of a typical level spread is shown in Figure 6-4. The purpose of a level spreader is to convert concentrated, potentially erosive flow to low velocity sheet flow that is released uniformly over a stabilized, typically vegetated, area. The resultant sheet flow enhances pollutant filtering and runoff infiltration and reduces the potential for erosion.

Level spreaders are difficult to construct properly, and therefore a high degree of care must be taken to construct the spreader lip completely level. A spreader lip that slopes to one side or has notches or depressions along its length will result in concentrated flow discharging over the lip, defeating the purpose of the spreader. Improperly designed level spreaders can reduce the effectiveness of filter strips and buffer areas to remove pollutants by filtering of runoff, and can increase the potential for erosion in vegetated areas to which the level spreader discharges. All level spreaders shall conform to the design standards listed below.

For impervious surface runoff applications:

- The capacity for the level spreader is determined in the design of the structural BMP or water quality buffer to which it discharges. Design guidance for water quality buffers is presented in Chapter 6.
- The spreader shall run linearly along the entire length of the BMP to which it discharges. In most cases, the spreader will be the same width as the contributing impervious surface. The ends of the spreader shall be tied into higher ground to prevent flow around the spreader.

For diversion outlet applications:

• The capacity of the level spreader shall be determined using the peak flow from the 10-year, 24-hour storm. The drainage area shall be restricted so that maximum flows into the spreader will not exceed 30 cfs.

For all level spreader applications:

- The minimum depth shall be 6-inches and the minimum width shall be 6 feet for the lower side slope.
- Side slopes shall be 2:1 (horizontal to vertical) or flatter.
- The grade of the spreader shall be 0%.
- The appropriate length, width, and depth of spreader should be selected from Table 3-9.

Design Flow (cfs)	Minimum Entrance Width (ft)	Minimum Depth (ft)	Minimum End Width (ft)	Minimum Length (ft)
0-10	10	0.5	3	10
10-20	16	0.6	3	20
20-30	24	0.7	3	30

Table 6-1 Level Flow Spreader Dimensions

(Source: City of Raleigh, 2002)

- It will be necessary to construct a 20 foot transition section in the diversion channel (formed by the diversion berms) so the width of the channel will smoothly meet the width of the spreader to ensure uniform outflow.
- The last 20 feet of the diversion channel shall provide a smooth transition from the channel grade to the level spreader and where possible, shall be less than or equal to 1%.
- The receiving area below the level spreader shall be protected from harm during construction. Minor disturbed areas shall be stabilized with vegetative measures. A temporary stormwater diversion may be necessary until the vegetation on the level spreader has fully stabilized.

- Level spreaders must blend smoothly into the downstream receiving area without any sharp drops or irregularities, to avoid channelization, turbulence and hydraulic "jumps."
- Level spreaders shall be constructed on undisturbed soil where possible. If fill is used, it shall be constructed of material compacted to 95% of standard proctor test levels prior to seeding for that area not considered the seedbed.
- Immediately after level spreader construction, seed and mulch the entire disturbed area of the spreader.
- The level spreader lip shall be protected with erosion resistant material to prevent erosion and allow vegetation to be established.

6.4 Considerations for Buffer Areas

The minimum requirements for vegetated buffers that are presented in section 6.2 are intended to establish, restore and/or protect buffers for the purposes of streambank stabilization and stream canopy. However, going beyond the minimum requirements should be considered by site developers. Wide, forested buffer areas can provide a multitude of benefits to local stream water quality and are one of a number of best management practices (BMPs) that are available to site developers for incorporation into development plans to meet water quality goals.

When properly vegetated and preserved, buffers provide a tool for the improvement of stream water quality and habitat. Research has shown that buffers having significant width (e.g., 50 feet and greater) and appropriate dense vegetation (e.g., forest, woody shrubs and dense grasses) will slow and spread-out stormwater runoff from upstream impervious areas, and will filter sediment and the chemicals and pollutants that attach to sediment particles via the trees, shrubs, and grasses that make up the buffer area (Desbonnet et al. 1994). Further, the trees and other vegetation in a buffer provide shade for the stream and buffer area, allowing stormwater runoff that has been heated on roofed and paved areas to cool before reaching the stream and shading the stream to protect it from direct sunlight that heats the stream. The temperature of the stream is important for the protection of the organisms that live in the stream. At higher temperatures, water retains less dissolved oxygen, decreasing the amount available to the aquatic life and resulting in

PURPOSES OF A STREAM BUFFER:

- Reduce erosion and stabilize stream banks.
- Assist with infiltration of stormwater runoff.
- Control sedimentation.
- Reduce the effects of flood and drought.
- Provide shade to streams.
- Provide and protect habitat for aquatic species and other wildlife.
- Offer scenic value and recreational opportunities.
- Restore and maintain the chemical, physical and biological integrity of water resources.
- Minimize public investment in waterway restoration, stormwater management, and other public water resource endeavors.

Shueler, WPT Summer, 1995 Vegetated Riparian Buffers and Buffer Ordinances, SCDEC physical stress or death.

Vegetated buffers can also act as a flood and erosion management tool. Buffers slow runoff velocities, increase baseflows, counter channelization of runoff inflows, and reduce inflow volumes through infiltration into the soil and capture in vegetation. These effects can reduce the potential for downstream flooding, and the potential for streambank instability and erosion, both in the buffered area and downstream. Because development in buffered areas is limited, buffers can be helpful for floodplain management, preventing development along the stream edge and, in some cases, the floodplain.

Site developers and design engineers are encouraged to go beyond the

minimum requirements stated in this section to protect stream water quality or other environmentally sensitive areas, promote infiltration and filtration of stormwater runoff and provide wildlife habitat. A WQv credit, called the Vegetated Buffer Credit, is offered to provide an incentive for wider, more heavily vegetated buffers that can provide additional water quality benefits. The use of this credit can reduce the WQv that is required for treatment. Chapter 5 of this manual provides more information on the Vegetated Buffer Credit.

6.5 References

Desbonnet, et al. 1994. Vegetated Buffers in the Coastal Zone. A Summary Review and Bibliography. Coastal Resources Center, University of Rhode Island.

Shueler, T. Vegetated Riparian Buffers and Buffer Ordinances. SCDEC, Summer, 1995.

This page left intentionally blank

BMP MAINTENANCE

7.1 Introduction

The purpose of this Chapter is to provide general information on inspection and maintenance requirements for stormwater best management practices (BMPs) and general information on pollution prevention on developed properties.

7.2 BMP Inspection and Maintenance

Proper maintenance of stormwater BMPs is one of the most important factors in the long-term performance and effectiveness of a Stormwater Management Program. Property owners or homeowners associations are required to properly maintain BMPs located on private property for the life of the BMP, and therefore must execute protective covenants that include legally-binding inspection and maintenance requirements. The protective covenants are entitled "Covenants for Permanent Maintenance of Stormwater Facilities and Best Management Practices", and a blank copy is presented in Appendix E of this manual.

Effective, long-term operation and maintenance of BMPs requires a three-phased approach on the part of the developer, property owner and local jurisdiction. These three phases are as follows:

1) <u>Site Developer</u>: In an effort to reduce maintenance requirements for each development, a developer or site designer should consider the maintenance requirements for each stormwater structural or non-structural BMP when designing a development. To this end, the City of Kingsport strongly encourages site designers to utilize non-structural BMPs and better site design practices to the maximum degree possible, thereby reducing the degree of stormwater maintenance that will be required for the property after construction. Non-structural controls, which are discussed in detail in Chapter 5, generally require very little (and often no) maintenance and can reduce the size of any structural BMPs needed to treat stormwater runoff. The developer and site designer should then choose, design and construct structural BMPs that have the lowest relative long-term maintenance requirements based upon the site constraints.

2) <u>Property Owner</u>: After construction, the property owner is responsible to inspect and maintain the BMPs, vegetated buffers and WQv credit areas in accordance with the guidance provided in this manual. For more information on BMP inspection content, frequency and documentation, refer to the checklist for each BMP provided in Chapter 4 of this manual. Information on WQv credit areas is provided in Chapter 5 and the vegetated buffer information is provided in Chapter 6.

3) Local Jurisdiction: Local stormwater management regulations give local jurisdictions the authority to perform periodic inspections of stormwater BMPs, vegetated buffers and WQv credit areas in order to determine if these elements are being maintained in accordance with local regulations and policies. Corrective actions can be ordered or performed for elements that are determined to be improperly constructed or not maintained. Refer to the local stormwater management regulations for more information on jurisdictional authority and penalties if corrective actions are warranted.

APPENDIX A – Stormwater Management Ordinance

This page left intentionally blank

ORDINANCE NO. 6632

AN ORDINANCE TO AMEND THE CODE OF ORDINANCES, CITY OF KINGSPORT, TENNESSEE, SECTIONS 38-85 THROUGH 38-350 PERTAINING TO THE PROVISION OF STORMWATER MANAGEMENT FOR THE CITY OF KINGSPORT; TO FIX A PENALTY FOR THE VIOLATION OF THIS ORDINANCE; TO PROVIDE FOR SEVERABILITY OF THIS ORDINANCE; AND TO FIX THE EFFECTIVE DATE OF THIS ORDINANCE

WHEREAS, a stormwater management ordinance is needed to regulate stormwater drainage and treatment facilities, erosion prevention and sediment control, illicit discharge, grading, excavation, clearance, and other alteration of the land in order to limit the dangers of personal injury, property or environmental damage that may be caused by stormwater runoff; and

WHEREAS, the ordinance is needed to comply with state and federal regulations of the Clean Water Act; and

WHEREAS, the ordinance is needed to secure eligibility for flood insurance under Public Law 1016, 84th Congress which will promote the public health, safety, and general welfare of the citizens of the City of Kingsport; and

WHEREAS, the Tennessee Department of Environment and Conservation has issued a new NPDES General Permit for Small Municipal Storm Sewer Systems to the City of Kingsport; and

WHEREAS, the permit necessitates some changes to the ordinances governing stormwater management.

Now therefore,

BE IT ORDAINED BY THE CITY OF KINGSPORT, as follows:

SECTION I. That Sections 38-85 through 38-350, of the Code of Ordinances, City of Kingsport, Tennessee, is amended as follows:

ARTICLE III. STORMWATER MANAGEMENT

DIVISION 1. GENERALLY

Sec. 38-85. Definitions.

The following words, terms and phrases, when used in this article, shall have the meanings ascribed to them in this section, except where the context clearly indicates a different meaning:

Active channel means the area of the stream that is most subject to water flow and that includes the portion of the channel below the top of bank.

Aquatic resource alteration permit (ARAP) means a permit issued by the state department of environment and conservation (TDEC) for physically altering waters (streams and wetlands) of the state.

As-built certification means as-built, field-verified plans signed and sealed by a registered

professional engineer and/or a registered land surveyor, both licensed to practice in the state, showing contours, elevations, grades, locations, and stormwater management facilities.

Best management practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures, structural controls and other management practices designed to prevent or reduce the discharge of pollutants to waters of the state. BMPs may include structural devices, such as stormwater management facilities, non-structural practices such as buffers or natural open spaces, treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Borrow Pit means an excavation from which erodible material (typically soil) is removed to be used as fill for another site, and there is no processing or separation of erodible material conducted at the site, and is considered a construction activity for the purposes of this article.

Buffer Zone or "Water Quality Riparian Buffer" is a strip of dense undisturbed native vegetation, either original or re-established, that borders streams and rivers, ponds and lakes, wetlands and seeps. Buffer zones are established for the purposes of slowing water runoff, enhancing water infiltration and minimizing the risk of any potential sediments, nutrients or other pollutants from leaving the upland area and reaching surface waters.

Building official means the city's representative charged with issuing land disturbing permits. *CFR* means the Code of Federal Regulations.

Channel means a natural or manmade watercourse of perceptible extent, with definite bed and banks to confine and conduct continuously or periodically flowing water.

Clearing.

(1) The term "clearing" means, in the definition of discharges associated with construction activity, the removal of vegetation and/or disturbance of soil prior to grading or excavation in anticipation of construction activities. Clearing may also refer to wide area land disturbance in anticipation of nonconstruction activities; for instance, cleared forested land in order to convert forest land to pasture for wildlife management purposes.

(2) The term "clearing" does not refer to clearing of vegetation along roadways, highways or powerlines for sight distance or other maintenance and/or safety concerns, or cold planing, milling, and/or removal of concrete and/or bituminous asphalt roadway pavement surfaces.

Common plan of development or sale is broadly defined as any announcement or documentation (including a sign, public notice or hearing, sales pitch, advertisement, drawing, permit application, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating construction activities may occur on a specific plot. A common plan of development or sale identifies a situation in which multiple areas of disturbance are occurring on contiguous areas. This applies because the activities may take place at different times, on different schedules, by different operators.

Construction means any placement, assembly or installation of facilities or equipment (including contractual obligations to purchase such facilities or equipment) at the premises where such equipment will be used, including preparation work at such premises.

Construction-related wastes means refuse or unused materials that result from construction activities. The term "construction-related wastes" can include, but are not limited to, unused building and landscaping materials, chemicals, litter, sanitary waste and concrete truck washout.

Contaminant means any physical, chemical, biological or radiological substance or matter in water. Conveyance means the capacity of a channel or a pipe to carry stormwater.

Covenants for permanent maintenance of stormwater facilities and best management practices means a legal document executed by the property owner, a homeowners' association or person as owner of record, and recorded with the county (Sullivan or Hawkins) register of deeds which guarantees perpetual and proper maintenance of stormwater facilities and best management practices.

Cross drain means a pipe used to convey stormwater from one side of a roadway to another. A cross drain can also be called a "culvert."

Design professional means an engineer, landscape architect, or architect competent in civil and site design and licensed to practice in the state.

Development means new and redevelopment projects that disturb equal to or greater than one acre, or less than one acre if part of a larger common plan of development or sale, and includes, but is not limited to, providing access to a site, clearing of vegetation, grading, earth moving, providing utilities, roads and other services such as parking facilities, stormwater management and erosion control systems, potable water and wastewater systems, altering land forms, or construction or demolition of a structure on the land.

Director means the public works director or designee who is responsible for the approval of development and redevelopment plans, and implementation of the provisions of this article.

Discharge means to dispose, deposit, spill, pour, inject, seep, dump, leak or place by any means,

or that which is disposed, deposited, spilled, poured, injected, seeped, dumped, leaked or placed by any means including any direct or indirect entry of any solid or liquid matter into the stormwater system by any means intentional or otherwise.

Disturbed area means the portion of any site that has been altered from existing conditions, including but not limited to the following: providing access to a site, clearing of vegetation, grading, earth moving, providing utilities and other services such as parking facilities, stormwater management and erosion control systems, potable water and wastewater systems, altering land forms, or construction or demolition of a structure on the land.

Drainage basin means the area contributing stormwater runoff to a single point.

Drainage system means the system of pipes, channels, culverts and ditches that convey stormwater from and through public and private land in the city.

Erosion means the removal of soil particles by the action of water, air, ice, gravity or other geological agents, whether naturally occurring or acting in conjunction with or promoted by manmade activities or effects.

Excavation means a cavity or hole in the land surface that is caused by the cutting, digging, or scooping and removal of soil, rock or other materials.

Exceptional Tennessee Waters are surface waters of the State of Tennessee that satisfy the characteristics as listed in Rule 0400-40-03-.06 of the official compilation rules and regulations of the State of Tennessee. Characteristics include waters within state or national parks, wildlife refuges, wilderness or natural areas; State or Federal Scenic Rivers; Federally-designated critical habitat; waters within an area designated as Lands Unsuitable for Mining; waters with naturally reproducing trout; waters with exceptional biological diversity or; other waters with outstanding ecological or recreational value as determined by the department.

Filling means any deposit or stockpiling of dirt, rocks, stumps or other natural or manmade solid waste material.

Grading means any clearing, excavating, filling or other disturbance of terrain.

Hazardous substance means any substance designated under 40 CFR 116, as amended, pursuant to section 116 of the Federal Clean Water Act.

Hotspot means an area where the land use or activities generate highly contaminated runoff, with concentrations of pollutants in excess of those typically found in stormwater.

Illicit connections means illegal and/or unauthorized connections to the municipal separate storm sewer system whether or not such connections result in discharges into that system.

Impervious area means impermeable surfaces which prevent the percolation of water into the soil including, but not limited to, pavement, parking areas and driveways, packed gravel or soil, or rooftops.

Illicit discharge means an intentional or unintentional discharge of water into the municipal separate storm sewer system that is not composed entirely stormwater, except as otherwise set out in section 38-314(b).

Inspector means a person that has successfully completed (has a valid certification from) the "Fundamentals of Erosion Prevention and Sediment Control Level I" course or equivalent course.

Land disturbing activity means any activity on a property that results in a change in the existing soil (both vegetative and nonvegetative) and/or the existing soil topography. The term "land disturbing activities" include, but are not limited to, development, redevelopment, demolition, construction, reconstruction, clearing, grading, filling, logging and/or tree chipping operations (excluding silviculture operations), haul roads associated with the development and excavation.

Land disturbing permits means a building, demolition or grading permit approved by the director and issued by the building official, authorizing commencement of land disturbing activities.

Municipal separate storm sewer system. (MS4) means a conveyance or system of conveyances (including roads with drainage systems, streets, catchbasins, curbs, gutters, ditches, constructed channels, and storm drains) designed or used for collecting or conveying stormwater.

National Pollutant Discharge Elimination System. (NPDES) means the program administered by the United States Environmental Protection Agency to eliminate or reduce pollutant discharges to the waters of the United States.

NOI means notice of intent as identified in the State of Tennessee General NPDES Permit for Discharges of Stormwater Associated with Construction Activities and administered by the City of Kingsport QLP.

NOC means notice of coverage as identified in the State of Tennessee General NPDES Permit for Discharges of Stormwater Associated with Construction Activities and administered by the City of Kingsport QLP.

NOT means notice of termination as identified in the State of Tennessee General NPDES Permit for Discharges of Stormwater Associated with Construction Activities and administered by the City of Kingsport QLP.

Obstruction means the accumulation of debris, whether intentional or otherwise, resulting in the interference of flow through a watercourse.

Outfall means the terminus of a stormwater system where the contents are released into a larger public or private stormwater management system, or into a stream.

Owner / operator / person (owner) means any party associated with a construction project that meets any of the following two criteria:

(1) The party has design control over construction plans and specifications, including the ability to authorize modifications to those plans and specifications (this will typically be the owner or developer);

(2) The party has day-to-day operational control of those activities at a project which are necessary to ensure compliance with a stormwater pollution prevention plan (SWPPP) for the site or other permit conditions (e.g., they are authorized to direct workers at a site to carry out activities required by the SWPPP or comply with other permit conditions). (This will typically include the general contractor and would also include erosion prevention and sediment control contractors); or

(3) Any individual, firm, corporation, partnership, association, organization or entity, including governmental entities or any combination thereof.

Peak discharge means the maximum, instantaneous rate of flow of water at a particular point resulting from a storm event. The term "peak discharge" also means the maximum discharge computed for a given design flood event.

Plan means the stormwater management plan.

Pollutant means dredged spoil, solid waste, incinerator residue, filter backwash, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal and agricultural waste or any other substance that is detrimental to the quality of the waters of the state.

Priority construction activity means land disturbing activities that are located in a watershed that discharges directly into waters recognized by the state as unavailable parameter waters impaired for siltation or habitat alteration, or exceptional Tennessee waters. A property is considered to have a direct discharge, if stormwater runoff from the property does not cross any other property before entering the water of the state.

Public water means stormwater runoff that originates in whole or in part from or is conveyed by publicly owned facilities such as roads.

Qualifying Local Program (QLP) is an MS4 Stormwater Management Program for discharges associated with construction activity that has been formally approved by TDEC as having met specific minimum program requirements, including those identified in 40 CFR § 122.44(s).

Runoff means the water resulting from precipitation that is not absorbed by the soil.

Sanitary sewer means a system of underground conduits that collects and delivers wastewater from toilets, sinks and other plumbing fixtures to a wastewater treatment plant.

Sediment means solid material, either mineral or organic, that is in suspension, is being transported, or has been moved from its site of origin by erosion.

Sewage means human wastes carried by water from residences, buildings, industrial establishments or other places, together with such industrial wastes, stormwater or other water as may be present; or any substance discharged from a sanitary sewer collection system.

Sinkhole means a depression characterized by closed contours on a topographic map. A sinkhole throat, or opening to the subsurface, may or may not be visible. Field verification may be required in areas where the depth of the depression is below the tolerance of currently available topographic mapping. The extent of the area considered to be a sinkhole is, at a minimum, the limits determined by the 100 year water surface elevation, assuming plugged conditions (zero cubic feet per section (cfs) outflow).

Special flood hazard area means the land in the floodway and/or floodplain that is subject to flooding during the 100 year frequency storm. The areas of special flood hazard identified by FEMA in its flood hazard boundary map dated April 2, 1981, and any revisions thereto, are adopted by reference and declared to be a part of this article.

Stormwater means runoff from rain, snow or other forms of precipitation, which results in surface runoff and drainage.

Stormwater control measures (SCMs) are permanent practices and measures designed to reduce the discharge of pollutants from development.

Stormwater management facilities means structures and constructed features designed for the collection, conveyance, storage, treatment and disposal of stormwater runoff into and through the stormwater system. The term "stormwater management facilities" include, structural or nonstructural measures, or both, to control the increased volume, rate and quality of stormwater runoff caused by manmade changes to the land.

Stormwater management manual (manual) means the document, as amended from time to time,

adopted by the city to provide guidance in understanding and implementing the requirements for stormwater management.

Stomwater management plan (plan) means an engineering plan for the design of stormwater management facilities and best management practices for a proposed development or redevelopment.

Stormwater master plan means an engineering and planning study for the drainage system of a watershed that consists of a plan for stormwater management in the watershed. The stormwater master plans can address flooding problems, water quality problems, potential stormwater capital improvements, land use patterns and regulatory issues for existing and future conditions.

Stormwater pollution prevention plan (SWPPP) means a written plan (including site maps, plats, drawings or other graphic representations) that identifies construction/contractor activities that could cause pollutants in the stormwater, and a description of best management practices to control these pollutants and keep sediments on site.

Storm water system means the system of roadside drainage, roadside curbs and gutters, curb inlets, swales, catchbasins, culverts, cross drains, headwalls, junction boxes, outlets, manholes, gutters, ditches, pipes, lakes, ponds, sinkholes, channels, creeks, streams, storm drains, water quality best management practices and similar conveyances and facilities, both natural and manmade, located within the city which are designated or used for collecting, storing, or conveying stormwater, or through which stormwater is collected, treated, stored or conveyed, whether owned or operated by the city or other owner/operator/ person.

Stream means a surface water that is not a wet weather conveyance (TCA 69-3-10.(40)). Stream include linear watercourses, lakes, ponds, and wetlands.

Structure means anything constructed or erected such that the use of it requires a more or less permanent location on or in the ground.

Subdivision means the division, subdivision or resubdivision of any lot or parcel of land as defined in the "Subdivision Regulations of the City of Kingsport and its Planning Region," on file in the city clerk's office.

Surface water means waters upon the surface of the earth in bounds created naturally or artificially. *TDEC* means the Tennessee Department of Environment and Conservation.

Top of bank means the uppermost limit of the active channel of a stream containing normal flows, usually marked by a break in slope.

Total maximum daily load (TMDL) means a calculation of the maximum amount of a pollutant that a body of water can receive and still meet water quality standards, and an allocation of that amount to the source of the pollutant.

Transporting means any moving of earth materials from one place to another, other than such movement incidental to grading, as authorized on an approved plan.

USACE means the United States Army Corps of Engineers.

Unavailable Parameters Waters means any stream segment that has been identified by TDEC as failing to support classified uses.

Utility, public or private, means any agency which under public franchise or ownership, or under certification of convenience and necessity provides the public with electricity, natural gas, steam, communication, rail transportation, water, sewage collection or other similar service.

Vegetation means an intentionally cultivated collection of plant life, including trees, shrubs, bushes, and grass, but does not include plant life that was not intentionally planted.

Waste Site means an area where waste material from a construction site is stored or deposed of, and when the material is erodible, such as soil, the site must be treated as a construction site.

Water quality volume means the volume of stormwater runoff from a proposed development or redevelopment that must be controlled for water quality treatment.

Water quality volume credit area means an area within the proposed development or redevelopment for which a reduction of the water quality volume can be obtained.

Watercourse means a channel, natural depression, gully, stream, creek, pond, reservoir or lake in which stormwater runoff and floodwater flows either regularly or infrequently. The term "watercourse" includes major drainageways for carrying urban stormwater runoff.

Waters or waters of the state means any and all waters, public or private, on or beneath the surface of the ground, which are contained within, flow through or border upon the state or any portion thereof except those bodies of water confined to and retained within the limits of private property in single ownership which do not combine or effect a junction with natural surface or underground waters.

Watershed means a region or area bounded peripherally by a divide and draining ultimately to a particular watercourse or body of water.

Wet weather conveyance means, notwithstanding any other law or rule to the contrary, man-made or natural watercourses, including natural watercourses that have been modified by channelization:

(A) That flow only in direct response to precipitation runoff in their immediate locality;

(B) Whose channels are at all times above the groundwater table;

(C) That are not suitable for drinking water supplies; and

(D) In which hydrological and biological analyses indicate that, under normal weather conditions, due to naturally occurring ephemeral or low flow there is not sufficient water to support fish, or multiple populations of obligate lotic aquatic organisms whose life cycle includes an aquatic phase of at least two (2) months.

Wetland means an area that is inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetland determination shall be made by the United States Army Corps of Engineers, and/or the state department of environment and conservation, and/or the natural resources conservation service.

Sec. 38-86. Purpose.

It is the purpose of this article to:

(1) Apply to all areas located within the jurisdiction of the city.

(2) Apply to all development unless exempted pursuant to Sec 38-141.

(3) Protect, maintain, and enhance the environment of the city and the public health, safety and the general welfare of the citizens of the city, by controlling discharges of pollutants to the public stormwater system, while maintaining and improving the quality of the receiving waters of the state.

(4) Enable the city to comply with the National Pollution Discharge Elimination System (NPDES) permit and applicable regulations, 40 CFR 122.26 for stormwater discharges.

(5) Allow the city to exercise the powers granted in T.C.A. § 68-221-1105, which provides that, among other powers municipalities have with respect to stormwater facilities, is the power by ordinance or resolution to:

a. Exercise general regulation over the planning, location, construction, and operation and maintenance of stormwater facilities in the municipality, whether or not owned and operated by the municipality;

b. Adopt any rules and regulations deemed necessary to accomplish the purposes of this statute, which may include the adoption of a system of fees for services and permits;

c. Establish standards to regulate the quantity and contaminants of stormwater as may be necessary to protect water quality;

d. Review and approve plans and plats for stormwater management in proposed subdivisions or commercial developments;

e. Issue permits for stormwater discharges or for the construction, alteration, extension, or repair of stormwater facilities;

f. Suspend or revoke permits when it is determined that the permittee has violated any applicable ordinance, resolution or condition of the permit; and

g. Expend funds to remediate or mitigate the detrimental effects of contaminated land or other sources of stormwater contamination, whether public or private.

Sec. 38-87. Responsibility.

Nothing in this article shall be construed to imply a warranty or the assumption of responsibility on the part of the city for the suitability, fitness or safety of any structure with respect to flooding, water quality, or structural integrity. This article is a regulatory instrument only, and is not to be interpreted as an undertaking by the city to design any structure or facility.

Secs. 38-88 - 38-117. Reserved.

DIVISION 2. ADMINISTRATION

Sec. 38-118. Duties and authority of director.

(a) The director has the authority to adopt additional policies, criteria, specifications, standards, rules, regulations, and guidance for the proper implementation of the requirements of this article and the stormwater management manual. The manual shall be enforceable, consistent with other provisions of this article, as if it were a part of this article.

(b) The director shall have the authority to prepare, or have prepared, master plans for drainage basins and to establish regulations or direct capital improvements to carry out said master plans.

(c) In the event that the director determines that a violation of any provision of this article has occurred, or that work does not have a required plan or permit, or that work does not comply with an approved plan or permit, the director may issue enforcement responses as defined in division 10 of this article, pertaining to enforcement, to the owner subject to the right of appeal set out in

section 38-343.

(d) The director and the staff under the director's supervision shall administer the provisions of this article.

Sec. 38-119. Stormwater appeals board--Established; composition.

(a) There is created and established, pursuant to T.C.A. § 68-221-1106 et seq., the stormwater appeals board, referred to in this article as "appeals board," which shall be composed of four members as follows:

(1) A member of the board of mayor and alderman, who shall serve as chair, but shall have no vote unless there is a tie among voting members;

(2) A member of the planning commission;

(3) The head of the planning department or designee; and

(4) The building official.

(b) All appeals board members shall serve without pay or other compensation.

(c) The appeals board shall promulgate such procedural rules as may be deemed necessary in the interest of justice, fairness and impartiality.

(d) All members of the appeals board, except the planning director and building official shall be appointed by the mayor, subject to confirmation by the board of mayor and aldermen.

Sec. 38-120. Same--Duties and authority.

The appeals board shall have the power, duty and responsibility to:

(1) Hear appeals from orders issued by the director assessing penalties, damages or revoking or modifying permits;

(2) Affirm, modify or revoke such actions or orders of the director;

(3) Issue notices of appeals and subpoenas requiring attendance of witnesses and the production of evidence;

(4) Administer oaths and examine witnesses;

(5) Take such testimony as the appeals board deems necessary; and

(6) Hear appeals of owners for the purpose of reviewing the denial of a permit or imposition of terms or conditions in permits or any exceptions granted by the director.

Secs. 38-121 - 38-138. Reserved.

DIVISION 3. EROSION PREVENTION AND SEDIMENT CONTROL

Sec. 38-139. General requirements.

(a) Land disturbing activity or construction that in any way causes off-site sedimentation or sediment discharges to waters of the state or that causes the city to be in violation of its NPDES general permit for discharges from small municipal separate storm sewer systems, or its replacement, shall be a violation of this article.

(b) No owner of any property within the city shall commence land disturbing activity greater than or equal to one acre unless a land disturbing permit is issued by the building official; provided this subsection (b) shall not apply if the land disturbance is less than one acre if part of a larger common plan of development or sale that would disturb one acre or more, or is a small lot as set out in section 38-142. The issuance of a land disturbing permit shall be conditioned upon the receipt and approval by the director of a stormwater pollution prevention plan (SWPPP) and an NOC provided by the city.

(c) The city shall serve as the plan approval agency only, and in no instance are its regulations to be construed as designing erosion prevention and sediment control measures or other stormwater management facilities.

(d) No building permit, where applicable, shall be issued until the owner has obtained and is in compliance with the land disturbing permit.

(e) All land disturbing activities shall employ adequate erosion prevention and sediment control BMPs.

(f) No land disturbing activities shall commence until a certified erosion prevention and sediment control inspector has been appointed by the owner and acknowledged by the director. Inspections must be performed in accordance with Sub-sections 3.1.2 and 3.5.8 of the CGP.

(g) The owner must notify the director ten working days in advance of the commencement of construction.

(h) A pre-construction meeting with construction site operators shall be held prior to commencement of land disturbing activity.

(i) At completion of land disturbing activities and approval of stormwater management facilities by

the director, a copy of the signed notice of termination (NOT) shall be provided to the city.

Sec. 38-140. Design criteria.

The city adopts as its erosion and sediment control design standards and best management practices manual the TDEC Erosion Prevention and Sediment Control Handbook, as amended.

Sec. 38-141. Stormwater pollution prevention plan (SWPPP).

(a) The requirements of the plan are as follows:

(1) The SWPPP shall be sealed by a qualified design professional licensed in the state provided the narrative portion of the SWPPP may be prepared by an individual that has a working knowledge of erosion prevention and sediment controls, such as a Certified Professional or a person that has successfully completed the Level II Design Principles for Erosion Prevention and Sediment Control for Construction Sites course;

(2) BMPs shall meet or exceed the requirements of the TDEC Erosion Prevention and Sediment Control Handbook;

(3) The SWPPP shall be subject to any additional requirements set forth in the city's subdivision regulations, chapter 114, zoning, or other city ordinances or regulations; and

(4) Construction at the site in accordance with the approved plan must commence within one year from the issue date of the grading permit, or the grading permit will become null and void and the plan must be resubmitted for approval.

(b) Stormwater pollution prevention plans shall be prepared in accordance with the Tennessee Erosion and Sediment Control Handbook and Sections 3, 4 and 5.4 of the Tennessee General NPDES Permit for Discharges Associated with Construction Activities, as amended, or any other information deemed necessary and appropriate by the owner or requested by the director.

Sec. 38-142. Small lot erosion prevention and sediment control plan.

(a) All land disturbing activities that affect less than one acre and are not part of a larger common plan of development shall adhere to the requirements of this subsection.

(b) Submittal of a small lot erosion prevention and sediment control plan is required and must be reviewed and approved by the director prior to issuance of a land disturbing permit.

(c) Small lot erosion prevention and sediment control plans shall include the following:

(1) Address/location of land disturbing activity.

(2) Owner's name and contact information;

(3) Building, grading or demolition permit number (if available);

(4) Location of streams, wetlands, ponds, sinkholes, easements, existing drainage structures with respect to the site;

(5) A description of erosion prevention and sediment control measures;

(6) Approximate disturbed area limits;

(7) Location of silt fences;

(8) Location of stabilized construction exits; and

(9) Roof drainage accommodations.

(d) The director has the discretion to require a fully engineered erosion prevention and sediment control plan in lieu of a small lot plan.

Sec. 38-143. Land disturbing requirements.

(a) Land disturbing activity subject to approval. Except as otherwise provided in this section, an owner shall not initiate any land disturbing activity until the city has issued written approval by the director, the SWPPP is approved by the director and an NOC supplied (where applicable), the appropriate fees are paid and any required performance bond or financial assurance is provided, as may be required in section 38-347. Such permit shall expire two years from the date of issuance. Once a permit has expired, it is a violation to continue work on the property for which the permit has been granted without obtaining a renewal of such permit, which shall include the submission and approval of a plan as set out in this article and other requirements to obtain a permit as set out in or authorized by this article.

(b) Certain activities excepted. No approval shall be required for the following:

(1) Building grading and excavation. Finished grading and excavation below the finished grade for basements and footings of a single-family or duplex residential structure, for retaining walls, swimming pools, cemeteries for human or animal burial or accessory structures related to single-family residences or duplex structures authorized by a valid building permit, provided the disturbed material or fill is handled in such a manner as to conform to any approved erosion prevention and sediment control plan for the area or, where no such plan is in effect, such work must be done in a manner which presents no significant erosion hazard.

(2) General excavation. An excavation or fill, provided it:

a. Is less than four feet in vertical depth at its deepest point, as measured from the original grade;

b Does not result in a total quantity of more than 100 cubic yards of material being removed from, or deposited on or disturbed on any lot, parcel or subdivision thereof;

c. Does not constitute a potential erosion hazard or act as a source of sedimentation to any adjacent land or watercourse;

d. Has no final slopes greater than or equal to one foot vertical in two feet horizontal;

e. Has proper vegetative cover reestablished as soon as possible on all disturbed areas; and

f. Has no fill placed on a surface having a slope steeper than three feet horizontal to one foot vertical.

(3) Agricultural. Accepted agricultural land management practices such as plowing, cultivation; nursery operations such as the removal and transplanting of cultivated sod, shrubs and trees; tree cuttings at or above existing ground level; and logging operations leaving the stump, ground cover and root mat intact.

(4) Landscaping. Grading, as a maintenance measure, or for landscaping purposes on existing developed lots or parcels, provided the aggregate are affected or stripped at any one time does not exceed 10,000 square feet and is not within a designated floodplain; the grade change does not exceed 18 inches at any point and does not alter the drainage pattern; vegetative cover is reestablished as soon as possible on all disturbed areas, use of kudzu is prohibited; and the grading does not involve a quantity of material in excess of 100 cubic yards.

(5) *Utilities.* The installation of water and sewer lines, telephone lines, electricity lines, gas lines or other public service facilities.

Sec. 38-144. Compliance.

The owner is responsible for maintaining compliance with the approved SWPPP, and land disturbance permit. The approved SWPPP shall be followed during the entire duration of construction at the site. The director may require reports or records from the owner. No land disturbing activity shall be allowed to commence without prior SWPPP approval by the director.

Sec. 38-145. Amendments to the approved SWPPP.

(a) The owner must modify and update the SWPPP in accordance with section 3.4.1 of the state construction general permit No. TNR100000.

(b) The SWPPP, as amended, shall be submitted to the director for approval.

Secs. 38-146 - 38-167. Reserved.

DIVISION 4. PERMANENT STORMWATER MANAGEMENT

Sec. 38-168. General requirements.

(a) Owners of land development activities not exempted under section 38-141 shall be required to obtain a land disturbing permit. As a condition of this permit, a stormwater management plan (plan) shall be submitted in accordance with Section 2.3.1 of the manual.

(b) The plan shall include the specific required elements that are listed and/or described in the manual. The director may require submittal of additional information in the plan as necessary to allow an adequate review of the existing or proposed site conditions.

(c) The plan shall be subject to any additional requirements set forth in the minimum subdivision regulations, design standards, chapter 114, pertaining to zoning, or other city regulations.

(d) Plans shall be prepared and stamped by a design professional. Portions of the plan that require hydraulic or hydrologic calculations and design shall be prepared and stamped by a professional engineer competent in civil and site design and licensed to practice in the state.

(e) The approved plan shall be adhered to during grading and construction activities. Under no circumstances is the owner or operator of land disturbing activities allowed to deviate from the approved plan without prior approval of a plan amendment by the director.

(f) The approved plan shall be amended if the proposed site conditions change after plan approval is obtained, or if it is determined by the director during the course of grading or construction that the approved plan is inadequate.

(g) Requirements for the permanent operation and maintenance of stormwater management facilities, BMPs, buffer zones and water quality volume credit areas shall be submitted with the plan for approval by the director. These will be presented through the declaration of a protective covenant, for permanent maintenance of stormwater facilities and BMP's, which shall be enforceable by the city. The covenant shall be recorded with the deed and shall run with the land and continue in perpetuity.

(h) Stormwater management facilities, BMPs, buffer zones and areas that receive water quality volume reductions shall be placed into a permanent management stormwater easement of sufficient area that is recorded with the deed to the parcel and held by the city.

(j) A right-of-way or permanent easement of sufficient width shall be provided for vehicular and equipment ingress and egress for access to all stormwater management facilities, BMPs and areas that receive water quality volume reductions from a driveway, public or private road.

(k) Owners of land development activities not exempted from submitting a stormwater management plan may be subject to additional watershed or site-specific requirements than those stated in section 38-140 in order to satisfy local or state NPDES, TMDL or other regulatory water quality requirements for developments or land uses that are considered pollutant hotspots, discharging to critical areas with sensitive resources or in areas where the director has determined that additional restrictions are needed to limit adverse impacts from the proposed development on water quality or channel protection.

(I) The director may waive or modify any of the requirements of this division if adequate water quality treatment and/or channel protection is suitably provided by a downstream or shared off-site stormwater facility, or if engineering studies determine that installing the required stormwater management facilities would adversely impact water quality, increase channel erosion or downstream flooding.

(m) This article is not intended to repeal, abrogate or impair any existing easements, covenants, deed restrictions or existing ordinances and regulations. However, where a provision of this article and other regulations conflict or overlap, the provision that is more restrictive or imposes higher standards or requirements on the owner shall control. The owner is required to notify the director of any such regulatory conflicts upon submittal of the plan.

Sec. 38-169. Design criteria.

(a) All developments that must submit a stormwater management plan shall provide water quality treatment in accordance with the following requirements:

(1) Stormwater runoff from the development site must be treated for water quality prior to discharge from the development site in accordance with the stormwater treatment standards and criteria provided in the manual.

(2) Water quality treatment shall be achieved through the use of one or more structural and/or nonstructural SCMs that are designed and constructed in accordance with the critería, guidance, and specifications provided in the manual.

(3) Stormwater quality control methods, designs or technologies not provided in the manual may be submitted for approval if it is proven that such alternatives will meet or exceed the water quality control requirements set forth in the manual and this chapter.

(4) SCMs shall not be installed within public rights-of-way or on public property without prior approval of the director.

(b) All developments that must submit a plan shall provide downstream channel protection using the design criteria and guidance provided in section 3.4 of the manual.

(c) All developments that must submit a plan shall provide a downstream impact analysis addressing overbank flood control in accordance with section 3.5 of the manual.

(d) All developments that must submit a plan shall establish, protect and maintain a buffer zone, in accordance with the policies criteria and guidance set forth in the manual. Exemptions from this requirement are as follows:

(1) The perimeter of waterbodies that have no known connection to streams, other ponds, lakes or wetlands.

(2) Stormwater management facilities or BMPs that are designed, constructed and maintained for the purposes of stormwater quality and/or quantity control, unless expressly required by the design standards and criteria for the facility are provided in the manual.

(e) In addition to the requirements set forth in subsections (a) through (d) of this section, all developments that must submit a stormwater management plan shall include the following:

(1) Account for both on-site and off-site stormwater;

(2) Maintain natural drainage divides and hydrologic characteristics;

(3) Provide soils information; and

(4) Control stormwater runoff and provide peak discharge/volume control in accordance with this article using:

a. Predeveloped conditions unless otherwise specified by the director;

b. NOAA Atlas 14 rainfall data;

c. Post-development versus pre-development hydrologic/hydraulic modeling that shows attenuation of developed site runoff. Developed discharge from a site shall be less than or equal to pre-development discharge for the 2 year through 100 year design storms;

d. Longitudinal storm drains designed for a ten-year frequency storm, provided that no residential or commercial structures are flooded by a 100 year frequency storm;

e. Roadway cross drains designed for a ten-year frequency storm for a local street and 100 year frequency storm for a collector street, provided no residential or commercial structures are flooded by the 100 year frequency storm. All pipes lying under the roadway shall be reinforced concrete unless otherwise approved by the director;

f. Drainage easements delineating the 100 year frequency storm flood fringe to prevent flooding and future disturbance; and

g. Pipe materials approved by the director.

(f) Pursuant to the City of Kingsport Zoning Ordinance, a floodplain development permit is required for all development or redevelopment within federally designated floodplains as shown on the applicable FEMA Flood Insurance Rate Map(s) of latest issue.

(g) The rational method shall be used to determine peak flow rates only. National Resource Conservation Service (NRCS) methods and those provided in the manual for water quality and channel protection shall be used in determining storage requirements.

(h) All supporting hydrologic and hydraulic assumptions shall be submitted, as well as all maps and references used in calculations.

(i) The design must not adversely affect adjacent or neighboring properties.

(j) The city may allow stormwater control measures to be implemented at another location within the same USGS 12-digit hydrologic unit code (HUC) watershed as the original project. Off-site mitigation must treat a minimum of 1.5 times the amount of water not treated on site. The off-site mitigation location must be approved by the city.

(k) if the project cannot meet pollutant removal standards, and cannot provide for off-site mitigation, the city may allow the owner to make payment in a public stormwater project fund at a level sufficient to design, install, and maintain the stormwater mitigation measures.

Sec. 38-170. Exemptions.

(a) Developments that conform to the criteria in subsection (c) of this section are exempt from the requirements of this chapter, unless the director has determined that stormwater quality management is needed to satisfy local or state NPDES, TMDL or other regulatory water quality requirements, or the proposed development will be a pollutant hotspot, or to limit adverse stormwater quality or channel protection impacts of the proposed development.

(b) The exemptions listed in subsection (c) of this section shall not be construed as exempting these developments from compliance with stormwater requirements stated in the minimum subdivision regulations, chapter 114, pertaining to zoning, or other city regulations.

(c) The following developments are exempt from the requirements for a stormwater management plan:

(1) Residential or nonresidential developments that disturb less than one acre of land and are not part of a larger common plan of development or sale that would disturb one acre or more;

(2) Minor land disturbing activities such as residential gardens and residential or nonresidential repairs, landscaping or maintenance work;

(3) Individual utility service connections, unless such activity is carried out in conjunction with the clearing, grading, excavating, transporting, or filling of a lot for which a plan would otherwise be required;

(4) Installation, maintenance or repair of individual septic tank lines or drainage fields, unless such activity is carried out in conjunction with the clearing, grading, excavating, transporting or filling of a lot for which a plan would otherwise be required;

(5) Installation of posts or poles;

(6) Farming activities, existing nursery and agricultural operations, but not including construction conducted as a permitted principal or accessory use by chapter 114, zoning;

(7) Emergency work to protect life, limb or property, and emergency repairs, provided that the land area disturbed shall be shaped and stabilized in accordance with city requirements as soon as practicable;

(8) Additions or modifications to existing, individual, single-family structures;

(9) Silvicultural activities; and

(10) State and federal projects subject to the submission requirements of TDEC.

Sec. 38-171. Special pollution abatement requirements.

(a) A special pollution abatement plan shall be required for the following land uses, which are considered pollutant hotspots:

(1) Vehicle, truck or equipment maintenance, fueling, washing or storage areas, including but not limited to:

a. Automotive dealerships;

b. Automotive repair shops; and

c. Carwash facilities;

(2) Recycling and/or salvage yard facilities;

(3) Restaurants, grocery stores and other food service facilities;

(4) Commercial, facilities with outside animal housing areas, including animal shelters, fish hatcheries, kennels, livestock stables, veterinary clinics or zoos; and

(5) Other producers of pollutants identified by the director as a pollutant hotspot using information provided to or collected by the director, or reasonably deduced or estimated by the director from engineering or scientific study.

(b) A special pollution abatement plan may be required for land uses or activities that are not identified by this article as hotspot land uses, but are deemed by the director to have the potential to generate highly contaminated runoff with concentrations of pollutants in excess of those typically found in stormwater.

(c) The special pollution abatement plan shall be submitted as part of the plan, and the BMPs submitted on the plan shall be subject to all other provisions of this article. Technical requirements for the plan shall be based on the provisions and guidelines set forth in the stormwater management manual.

(d) BMPs specified in the special pollution abatement plan must be appropriate for the pollutants targeted at the site and must be approved with the plan.

(e) A special pollution abatement plan will be valid for a period of five years, at which point it must be renewed. At the time of renewal, any deficiency in the pollutant management method must be corrected.

Sec. 38-172. Sinkhole requirements.

The following sinkhole and drainage well plan information or approval from the appropriate regulating agency must be provided prior to the alteration of the natural drainage for watershed discharging to such features as sinkholes and drainage wells:

(1) Proposed on-site and offsite drainage channels that are tributary to a sinkhole throat or drainage well inlet shall be delineated, along with appropriate hydraulic calculations to define the existing and altered (if appropriate) 100 year floodplain and to confirm that off-site flooding will not be increased;

(2) Detailed contours are to be shown for all sinkholes that are to receive stormwater runoff from the site. These contours are to have a maximum interval of two feet and are to be verified by field surveys;

(3) A geologic investigation of all sinkholes receiving stormwater runoff from the site shall be performed. The report from this investigation shall he signed and sealed by a registered professional experienced in geology and groundwater hydrology and shall contain the following: a. Location and nature of aguifers;

b. Potential for siltation problems;

c. Foundation problems that may be expected around sinkholes;

d. Details of drainage structures to be built in sinkholes;

e. Any other factors relevant to the design of drainage from sinkholes;

f. Plans showing the 100 year flood-plain;

g. The 100 year floodplain shall be designated as a drainage easement on final subdivision plat; and

h. Details of plan for grading and clearing of vegetation within the 100 year floodplain;

(4) Compliance with any and all conditions that may be required by the federal government or the state shall be documented. The state division of groundwater is the primary regulatory agency for sinkholes and drainage wells. Drainage into a sinkhole may require a permit for a Class V well under rules for underground injection control (UIC); and

(5) Demonstration that development will not occur within the area flooded by the 100 year flood. The 100 year flood elevation may be lowered by construction of a detention pond. Calculations that document a lowering of the 100 year flood elevation shall be based on the 100 year, 24 hour storm using an appropriate safety factor for discharge into the sinkhole.

Sec. 38-173. Drainage requirements.

(a) Private drainage systems, where drainage originates in its entirety on private property and terminates on same said property, shall be the sole responsibility of the owner.

(b) Private drainage originating on private property and draining to an adjacent parcel of private property shall be resolved by the owners involved.

(c) In cases where flooding stemming from the drainage system or streams are of significant

magnitude, the health and welfare of private and/or public property may prompt the city to participate in mitigating the frequency and effects. All such projects shall meet with the approval of the director prior to implementation.

(e) The requirements of subsections (a) through (d) of this section may be waived and emergency measures taken to protect the public safety during those circumstances in which, due to unforeseen events, development and/or acts of nature, the public welfare requires it. The director shall have the power to exercise all due discretion, judgment and executive directives to address any such situation and/or emergency.

(f) No watercourse shall be obstructed.

(g) Stormwater drainage shall not:

(1) Adversely impact adjacent properties or public rights-of-way;

(2) Circumvent stormwater management facilities for which that flow contribution was designed; or

(3) Be directed through a curb without a permit approved by the director.

(h) Additional curbing to control stormwater shall be installed only with approval of the director.

Secs. 38-174 - 38-198. Reserved.

DIVISION 4 5. PERMITS

Sec. 38-199. General requirements.

Owners who hold NPDES general, individual and/or multisector permits shall provide either a copy of such permit or the permit number assigned to them by the state department of environment and conservation to the director no later than 60 calendar days after issuance of the permit. **Secs. 38-200--38-224. Reserved.**

DIVISION 6. AS-BUILT CERTIFICATIONS

Sec. 38-225. General requirements.

(a) Prior to the release of a performance bond required in section 38-347, certificate of occupancy or approval of final plat, an as-built certification shall be provided to the director, certifying that all drainage and treatment structures or facilities, BMPs, volumes, sizes, slopes, locations, elevations and hydraulic structures have been field verified, represent the as-built field conditions, and comply with the approved stormwater management plans, and that all required protective covenants have been properly filed with the appropriate register of deeds. Features such as roadway lines, grades, cross slopes, locations, contours, elevations, boundaries of buffer zones and areas that receive stormwater quality volume credits shall be provided to verify approved plans. Other contents of the as-built certification must be provided in accordance with guidance provided in the manual.

(b) As-built certifications shall include sufficient design information to show that stormwater management facilities required by this article will operate as approved. This shall include all necessary computations used to determine percent pollutant removal, the flow rates and treatment volumes required to size stormwater management facilities and BMPs.

(c) The as-built certification must be stamped by the appropriate design professional required to stamp the original plan, as stated in section 38-168(d).

(d) The owner shall also supply stormwater management facility certification forms, provided by the city, attesting that the facilities are constructed according to the approved design.

Secs. 38-226 - 38-252, Reserved.

DIVISION 7. INSPECTIONS, OPERATION AND MAINTENANCE

Sec. 38-253. Right-of-entry.

(a) During and after construction, the director may enter upon any property which has a stormwater management facility, BMP, buffer zone, water quality volume credit area, discharges or contributes, or is believed to discharge or contribute, to stormwater runoff or the stormwater system, streams, natural drainage ways or via any other private or public stormwater management system during all reasonable hours to inspect for compliance with the provisions of this article, or to request or perform corrective actions.

(b) Failure of an owner to allow such entry onto a property for the purposes set forth in subsection (a) of this section shall be cause for the issuance of a cease and desist order, withholding of a certificate of occupancy, and/or civil penalties and/or damage assessments in accordance with division 10 of this article.

Sec. 38-254. Requirements.

(a) The owners of stormwater management facilities, BMPs, buffer zones and water quality volume credit areas shall at all times inspect, properly operate and maintain all facilities and systems of stormwater treatment and control (and related appurtenances), and all buffer zones and water quality volume credit areas in such a manner as to maintain the full function of the facilities or BMP's which are installed or used by the owners to achieve compliance with this article.

(b) Inspection and maintenance of privately owned stormwater management facilities, BMP's, buffer zones and water quality volume credit areas shall be performed at the sole cost and expense of the owners of such facilities/areas.

(c) Inspection and maintenance shall be performed in accordance with specific requirements and guidance provided in the manual. Inspection and maintenance activities shall be documented by the owner or their designee, and such documentation shall be maintained by the owner for a minimum of three years, and shall be made available for review by the director upon request.

(d) The director has the authority to impose more stringent inspection requirements as necessary for purposes of water quality protection and public safety.

(f) The removal of sediment and/or other debris from stormwater management facilities and BMP's shall be performed in accordance with all city, state, and federal laws. Guidelines for sediment removal and disposal are referenced in the manual. The director may stipulate additional guidelines if deemed necessary for public safety.

(g) The director may order corrective actions as are necessary to properly maintain and operate erosion prevention and sediment control measures, BMP's stormwater management facilities, buffer zones and/or water quality volume credit areas within the city for the purposes of stormwater pollution prevention, water quality treatment, channel erosion protection, adherence to local performance standards and/or public safety. If the owner fails to perform corrective actions, the director shall have the authority to order the city or others to take corrective actions. In such cases where a performance bond exists, the city shall utilize the bond to perform the corrective actions. In such cases where a performance bond does not exist, the owner shall reimburse the city for all of its direct and related expenses. If the owner fails to reimburse the city, the city is authorized to file a lien for said costs against the property and to enforce the lien by judicial foreclosure proceedings.

(h) This article does not authorize access to adjoining private property by the owner or site operator. Arrangements concerning removal of sediment or pollutants on adjoining property must be settled by the owner or operator with the adjoining lan d owner.

Secs. 38-255 - 38-280. Reserved.

DIVISION 8. PERMIT CONTROLS AND SYSTEM INTEGRITY

Sec. 38-281. General requirements.

(a) Any alteration, improvement, or disturbance to stormwater management facilities, buffer zones or water quality volume credit areas shown in as-built drawings shall be prohibited without written authorization from the director. This does not include alterations that must be made in order to maintain the intended performance of the stormwater management facilities or BMPs.

(b) Other state and/or federal permits that may be necessary for construction in and around streams and/or wetlands shall be approved through the appropriate lead regulatory agency prior to submittal of a stormwater management plan to the city.

Secs. 38-282 - 38-304. Reserved.

DIVISION 9. NONSTORMWATER DISCHARGES

Sec. 38-305. General requirements.

(a) Except as set out in subsection (b) of this section, no owner shall introduce or cause to be introduced into the municipal separate storm sewer system any discharge that is not composed entirely of stormwater. The commencement, conduct, or continuance of any non-stormwater discharge to the municipal separate storm sewer system, whether intentional or not, is prohibited.
(b) For purposes of this article, the following are not illicit discharges unless identified as significant

contributors of pollutants to the municipal separate storm sewer system:

- (1) Landscape irrigation or lawn watering with potable water;
- (2) Diverted stream flows permitted by the state;

(3) Rising groundwater;

(4) Groundwater infiltration (as defined at 40 CFR 35.2005(20)) to separate storm sewers;

(5) Uncontaminated pumped groundwater;

(6) Foundation or footing drains;

- (7) Water discharged from crawl space pumps;
- (8) Air conditioning condensate;
- (9) Springs;
- (10) Individual, residential washing of vehicles;
- (11) Flows from natural riparian habitat or wetlands;
- (12) Swimming pools (if dechlorinated, less than one part per million chlorine);
- (13) Street cleaning and deicing;
- (14) Discharges from firefighting activities;
- (15) Pursuant to a valid and effective NPDES permit issued by the state;
- (16) Discharges necessary to protect public health and safety, as specified in writing by the city;
- (17) Dye testing permitted by the city;
- (18) Water line flushing or other potable water sources;
- (19) Natural riparian habitat or wetland flows; and
- (20) Discharges authorized by the Construction General Permit (CGP).

Sec. 38-306. Prohibition of illicit connections.

The construction, use, maintenance, and continued existence of illicit connections to the municipal separate storm sewer system are prohibited. This prohibition expressly includes, without limitation, illicit connections made in the past, even if the connection was permissible under law or practices applicable or prevailing at the time.

Sec. 38-307. Elimination of discharges or connections.

(a) Any owner of a property, which is, or may be, the source of an illicit discharge, may be required to implement, at such owner's expense, the BMPs necessary to prevent the further discharge of pollutants to the municipal separate storm sewer system.

(b) Any owner of a property or premises where an illicit connection is located shall be required, at such owner's expense, to eliminate the connection to the municipal separate storm sewer system.

(c) Compliance with all terms and conditions of a valid NPDES permit authorizing the discharge of stormwater associated with industrial activity, to the extent practicable, shall be deemed in compliance with the provisions of this article.

(d) No person shall dump or otherwise deposit outside an authorized landfill, convenience center or other authorized garbage or trash collection point, any trash or garbage of any kind or description on any private or public property, occupied or unoccupied, inside the city.

Sec. 38-308. Notification of spills.

(a) Notwithstanding other requirement of law, when any owner or tenant, or agent thereof or any person responsible for a facility or operation, or responsible for emergency response for a facility or operation, has information of any known or suspected release of a pollutant which results in, or may result in, a discharge into stormwater and/or the municipal separate stormwater system, such person shall take all necessary steps to ensure the discovery, containment, and cleanup of such release.

(b) When any owner or tenant, or agent thereof or any person responsible for a facility or operation, or responsible for emergency response for a facility or operation, has information of any known or suspected release of hazardous substance such person shall immediately notify emergency response agencies of the occurrence by emergency dispatch services, and shall notify the director no later than the next business day of the release of hazardous materials.

(c) When any owner or tenant, or agent thereof or any person responsible for a facility or operation, or responsible for emergency response for a facility or operation, has information of any known or suspected release of nonhazardous substance such person shall notify the director no later than the next business day.

(d) Notifications in person or by telephone shall be confirmed by written notice addressed and mailed to the director within three business days of the telephone notice.

(e) If the discharge of a pollutant emanates from a commercial or industrial establishment, the owner or operator of such establishment shall also retain an on-site written record of the discharge and the actions taken to prevent its recurrence. Such records shall be retained for at least three years.

(f) Documented illicit discharges shall be responded to no more than seven days from detection, and eliminated as soon as possible.

Sec. 38-309. Actions in violation of the city's NPDES permit.

Notwithstanding any other provision in this article, no person or entity shall allow any discharge into

the municipal separate storm sewer system that would be a violation of the city's NPDES general permit for discharges from small municipal separate storm sewer system or would cause the city to be in violation of its permit.

Secs. 38-310 - 38-330. Reserved.

DIVISION 10. ENFORCEMENT

Sec. 38-331. Remedies nonexclusive.

The remedies provided for in this article are not exclusive and the director may take any, all or any combination of these actions against a noncompliant owner. The director is empowered to take more than one enforcement action against any noncompliant owner that is in violation.

Sec. 38-332. Adoption of enforcement response plan.

An enforcement response plan, including a schedule of civil penalties which may be assessed for certain specific violations or categories of violations, shall be established by resolution of the board of mayor and aldermen. Any civil penalty assessed to a violator pursuant to this section may be in addition to any other penalty assessed by a state or federal authority.

Sec. 38-333. Show cause hearing.

An owner that has been issued an assessment of damages or civil penalty or order under this article may within ten days from such action submit a written request to appear before the director and show cause why the proposed enforcement action should not be taken. Upon receipt by the director of a timely request for a show cause hearing the director shall within a reasonable time notify the owner of the time and place for the hearing. In the written request for a show cause hearing the owner is responsible for providing the director an address, email address, fax number, or such for the receipt of the notice of the show cause hearing. A show cause hearing shall not be a bar against or prerequisite for the director taking any other action against the owner, but, except as otherwise provided by section 38-346, an offer of a show cause hearing by the director shall be made before taking further action on the administrative order or assessment of damages or civil penalties.

Sec. 38-334. Appeals process.

(a) Except in emergency suspensions pursuant to section 38-346, any owner against whom an assessment for damages or civil penalty or order has been made for a violation of this article, or a permit denied, revoked, suspended by the director, shall have 30 days after having been notified of the assessment or order, or after a permit has been denied, revoked or suspended, to appeal the action to the stormwater appeals board by filing with the city recorder a written petition for appeal setting forth the grounds and reasons for the appeal, and the owner shall serve a copy of the petition for appeal on the director. The failure to serve the city recorder within 30 days with the written petition for appeal is jurisdictional, and if an appeal is not taken within the 30 days the matter shall be final.

(b) Upon receipt of a written petition for appeal the city recorder shall give the owner 30 days written notice of the time and place of the hearing The director and the owner may agree to a continuance of the hearing; a continuance will be granted when there are not at least three members of the appeals board present for the hearing; the chairman of the appeals board may grant a continuance of the hearing for good cause shown; or as may otherwise be governed by its rules of procedure.

(c) An appeal to the appeals board shall be a de novo review.

(d) The appeals board shall have the authority to establish written rules of procedure for the conduct of its hearings, provided hearings before the appeals board shall be conducted in accordance with the following:

(1) The presence of at least three members of the appeals board shall be necessary to conduct a hearing.

(2) A verbatim record of the proceedings shall be taken. The transcript so recorded shall be made available to any party upon prepayment of a charge adequate to cover the costs of preparation.

(3) In connection with the hearing, subpoenas shall be issued in response to any reasonable request by any party to the hearing requiring the attendance and testimony of witnesses and the production of evidence relevant to any matter involved in the hearing. In case of contumacy or refusal to obey a notice of hearing or subpoena issued under this section, the chancery court shall have jurisdiction, upon application of the appeals board or the director, to issue an order requiring such person to appear and testify or produce evidence as the case may require, and any failure to

obey such order of the court may be punished as contempt under law.

(4) Testimony before the appeals board shall be given under oath or affirmation, but the rules of evidence shall not apply.

(5) On the basis of the evidence produced at the hearing, the appeals board shall by majority vote of the members present make findings and enter such decisions and orders as in its opinion will best further the purposes of this article, which shall be done orally at the hearing or, if recessed, when the hearing is reconvened.

Such decisions and orders of the appeals board shall by reduced to writing, signed by one of the members present at the hearing and filed with the city recorder, as an official act of the appeals board, which writing shall be maintained in the permanent records of the city recorder and shall serve as entry of the decision. A copy shall be delivered to the director and the petitioner or mailed to them at their last known addresses.

(6) Any person to whom an emergency order is directed pursuant to section 38-346 shall comply therewith immediately, but on petition to the appeals board shall be afforded a hearing not later than three working days from the receipt of such petition.

Sec. 38-335. Civil penalties.

(a) Pursuant to T.C.A. § 68-221-1106(a), any owner in violation of the provisions of this article shall be subject to a civil penalty of not less than \$50.00 or more than \$5,000.00 per day for each day of violations. Each day of violation may constitute a separate violation. This penalty may be determined by application of the enforcement response plan as defined in section 38-341.

(b) The director may recover reasonable attorney's fees, court costs and other expenses associated with enforcement of this article and the cost of any actual damages incurred by the city.(c) In determining the amount of the penalty to assess, the director shall consider the factors listed

in section 38-345, the enforcement response plan and may consider all relevant circumstances, including but not limited to the extent of harm caused by the violation, the magnitude and duration of the violation, the compliance history of the owner and any other factor provided by law.

Sec. 38-336. Method of assessment for noncompliance.

Civil penalties shall be assessed in the following manner:

(1) The director may issue an assessment against any owner responsible for the violation;

(2) Any person against whom an assessment has been issued may secure a review of said assessment by filing with the director a written petition setting forth the grounds and reasons for their objections and asking for a hearing on the matter before the appeals board. If a petition for review of the assessment is not filed within 30 days after the date the assessment is served, the owner shall be deemed to have consented to the assessment and it shall become final;

(3) If any assessment becomes final because of an owner's failure to appeal the city's assessment, the director may apply to the appropriate court for a judgment and seek execution of said judgment, and the court in such proceedings shall treat a failure to appeal such assessment as a confession of judgment in the amount of the assessment. Upon final order, if payment is not made, the director may issue a cease and desist order;

(4) In assessing a civil penalty, the following factors may be considered:

a. The harm done to the public health or the environment;

b. Whether the civil penalty imposed will be a substantial economic deterrent to the illegal activity;

c. The economic benefit gained by the violator;

d. The amount of effort put forth by the violator to remedy this violation;

e. Any unusual or extraordinary enforcement costs incurred by the city;

f. The amount of penalty established by ordinance or resolution for specific categories of violations; and

g. Any equities of the situation which outweigh the benefit of imposing any penalty or damage assessment;

(5) Damages may also include any expenses incurred in investigating and enforcing the requirements of this article; removing, correcting and terminating any discharge or connection; and also compensation for any actual damages to the property or personnel of the city caused by the violation, and any reasonable expenses incurred in investigating and enforcing violations of this article.

(6) Where the director has issued progressive enforcement to achieve compliance with this article, and in the judgment of the director such has not been successful, the director may refer the violation to TDEC.

Sec. 38-337. Emergency suspensions.

(a) Under this article, if the director finds that an emergency exists imperatively requiring immediate

action to protect the public health, safety or welfare; the health of animals, fish or aquatic life, or a public water supply; the director may, without prior notice, issue an order reciting the existence of such an emergency and requiring that such action be taken as the director deems necessary to meet the emergency, including suspension of a permit issued under this article.

(b) Any owner notified of a suspension shall immediately eliminate the violation. If an owner fails to immediately comply voluntarily with the suspension order, the director may take such steps as deemed necessary to remedy the endangerment. The director may allow the owner to recommence when the owner has demonstrated to the satisfaction of the director that the period of endangerment has passed.

(c) An owner that is responsible, in whole or in part, for any discharge or connection presenting imminent danger to the public health, safety or welfare; the health of animals, fish or aquatic life, or a public water supply; shall submit a detailed written statement, describing the causes of the harmful discharge or connection and the measures taken to prevent any future occurrence, to the director prior to the date of any show cause hearing under section 38-342.

(d) Nothing in this article shall be interpreted as requiring a hearing prior to any emergency suspension under this section.

(e) Any owner whose permit or operation is suspended pursuant to this section, on petition to the appeals board, shall be afforded a hearing as soon as possible, but in no case shall such hearing be held later than three working days from the receipt of such a petition by the director.

Sec. 38-338. Financial assurance.

(a) A performance bond and/or certificate of occupancy which guarantees satisfactory completion of construction work related to stormwater management facilities, channel protection, buffer zones and any BMP's shall be required. Prior to release of the performance bond and/or certificate of occupancy, the owner shall provide the city with an accurate as-built of the property and an executed protective covenant for all BMPs, buffer zones and areas that a final operations and maintenance plan, which shall include an executed legal document entitled covenants for permanent maintenance of stormwater facilities and BMP's. The owner shall record these items in the office of the county register of deeds. The location of the stormwater management facilities, BMP's, vegetated buffers, water quality volume credit areas and the water quality easements associated with these facilities/areas shall be shown on a plat that is also recorded in the office of the county register of deeds.

(b) Performance bonds shall name the city as beneficiary and shall be guaranteed in the form of a surety bond, cashier's check or letter of credit from an approved financial institution or insurance carrier. The surety bond, cashier's check or letter of credit shall be provided in a form and in an amount to be determined by the director. The actual amount shall be based on submission of plans and estimated construction, installation or potential maintenance and/or remediation expenses.

(c) The city recorder may refuse brokers or financial institutions the right to provide a surety bond, cashier's check or letter of credit based on past performance, ratings of the financial institution or other appropriate sources of reference information.

(d) The director may decline to approve a plan or issue or reissue a permit to any owner who has failed to comply with any section of this article, a permit or order issued under this article unless such owner first files a satisfactory bond, payable to the city, in a sum not to exceed a value determined by the director to be necessary to achieve consistent compliance.

Sec. 38-339. Injunctive relief.

When the director finds that an owner has violated or continues to violate any section of this article, or a permit or order issued under this article, the director may petition the appropriate court, through the city attorney, for the issuance of a temporary or permanent injunction, as appropriate, which restrains or compels the specific performance of the permit, order or other requirement imposed by this article on activities of the owner. The director may also seek such other action as is appropriate for legal and equitable relief, including a requirement for the owner to conduct environmental remediation. A petition for injunctive relief shall not be a bar against or a prerequisite for taking any other action against an owner.

Sec. 38-340. Additional stay.

The appeals board may grant an additional continuance and stay beyond that set out in section 38-343 upon the request of an owner and upon the posting of an appeal bond payable to the city in a sum to be determined by the director as necessary to protect the interests of the city. **Sec. 38-341.** Appeal and judicial review. The alleged violator may appeal a decision of the appeals board pursuant to the provisions of T.C.A. § 27-8-101 et seq.

SECTION II. It is hereby declared that the sections, clauses, sentences and parts of this ordinance are severable, are not matters of mutual essential inducement, and any of them shall be exscinded if the ordinance would otherwise be unconstitutional or ineffective. If any section, sentence, clause or phrase of this ordinance should be held to be invalid or unconstitutional by a court of competent jurisdiction, such invalidity or unconstitutionality shall not affect the validity or constitutionality of any other section, sentence, clause or phrase of this ordinance.

SECTION III. That this ordinance shall take effect from and after the date of its passage and publication, as the law directs, the public welfare of the City of Kingsport, Tennessee requiring it.

OMN CLARK, Mayor

APPROVED AS TO FORM: J. Michael Billingsley, gity Attorney

PASSED ON 1ST READING: December 6, 2016

PASSED ON 2ND READING: _____December 20, 2016_____

APPENDIX B – Enforcement Response Plan

This page left intentionally blank

RESOLUTION NO. 2017-106

A RESOLUTION AMENDING RESOLUTION NO. 2008-134 OF THE CITY OF KINGSPORT PERTAINING TO AN ENFORCEMENT RESPONSE PLAN FOR THE STORMWATER MANAGEMENT ORDINANCE

WHEREAS, the Tennessee Department of Environment and Conservation has issued a new NPDES General Permit for Small Municipal Storm Sewer Systems to the City of Kingsport; and

WHEREAS, the permit necessitates some changes to the Enforcement Response Plan.

Now therefore,

BE IT RESOLVED BY THE BOARD OF MAYOR AND ALDERMEN AS FOLLOWS:

SECTION I. That Resolution No. 2008-134 is amended as follows:

ENFORCEMENT RESPONSE PLAN

Introduction

The intent of this document is to provide guidance to city officials in enforcing the stormwater management ordinance. It should be used only as a guide while recognizing that each situation is unique. The provisions of this enforcement response plan are not mandatory. Actual enforcement procedures should consider any unusual aspects of a violation or condition, as well as special characteristics of an enforcement action, in determining the proper response.

While the purpose is to provide guidance for administration of the stormwater management ordinance, it is not intended to limit the judgment and flexibility of the director in determining an appropriate response.

Development Project Plan Review, Approval and Enforcement

The city conducts site plan review through the development project engineer, including interdepartmental consultations, to ensure comprehensive input. A letter to the developer states the city's response, soliciting any changes to the stormwater management plan. Any changes must be submitted in writing and reviewed by city staff before approval is granted.

The site plan must specifically address in the stormwater management plan how it will comply with performance standards stated in the city's stormwater management ordinance.

To ensure that permanent stormwater BMPs are installed as designed, appropriately stamped as-built certifications must be provided to the director for review and approval prior to the release of a performance bond. The owner must also supply stormwater management facility certification forms, provided by the city, attesting that the facilities are constructed according to the approved design.

NPDES Permit Referrals

If the city becomes aware that a construction activity, or an industrial stormwater discharge, exists and that the discharge must be permitted under an NPDES permit but is not so permitted, or if the city has not been able, through its enforcement mechanisms and protocol, to bring an NPDES-permitted discharge into compliance with the city's stormwater management ordinance, the city shall notify TDEC of this situation by supplying the following information to the local environmental field office (EFO): construction project or industrial facility location; name of owner or operator; estimated construction project size or type of industrial activity (including SIC code if known); and records of communication with the owner or operator regarding filing requirements or violation, including the last two follow-up inspections, two notices of violation or administrative orders, and any response from the owner or operator.

Complaint Management

The city investigates all stormwater-related complaints. They are received in several ways; either verbally, by hotline, web page, phone or from other city departments. Ensuing investigations must be initiated within seven days from the receipt of the complaint. Violations documented as a result of complaint investigation will lead to commensurate enforcement activities.

Inspection

The city conducts inspections of permitted or unpermitted sites, activities, or projects to assess compliance with the approved stormwater pollution prevention plan and/or erosion and sediment control plan and evaluate the potential for discharge of sediment and other construction related wastes. Documentation of observations is achieved through the completion of applicable inspection reports. Enforcement occurs by initiation of corrective actions, enforcement actions and penalties, as defined in and per the terms of the City's stormwater management ordinance.

Enforcement Tracking

The city tracks instances of non-compliance either in paper files or electronically. The enforcement case documentation shall include, at a minimum, the following: name of owner/operator; location of construction project or industrial facility; description of violation; required schedule for returning to compliance; description of enforcement response used, including escalated responses if repeat violations occur or violations are not resolved in a timely manner; accompanying documentation of enforcement response; any referrals to different departments or agencies; and date violation was resolved.

Chronic Violators

The city identifies chronic violators of any stormwater management program component and reduces the rate of noncompliance recidivism by tracking the violations, applying incentives and/or disincentives, and increasing the inspection frequency at the owner/operator's site. If corrective actions are not taken, the city pursues progressive enforcement and, if need be, performs the necessary work and assesses against the owner the costs incurred for repairs.

Enforcement Responses

The order of precedence for enforcement responses outlined in this guide should not be construed to prevent the director from taking a stronger action without first implementing less stringent steps, if in his opinion, a more forceful response is necessary.

Minor infractions may be resolved by a verbal warning, or written notice advising the owner/operator/person of the nature of the violation. If such action fails to generate an adequate response by the owner/operator/person, further enforcement actions as provided by the ordinance may be taken.

Verbal Warning

In the case of the most minor violation of a permit or the ordinance, a telephone call or informal meeting may be sufficient to obtain the desired compliance. Verbal warnings should be documented by contemporaneous notes.

Written Notice

A written notice is the lowest level of formal response to a violation. It is intended for minor violations which would not cause harm to the environment.

Notice of Violation

A notice of violation (NOV) is an official notification to inform a non-compliant owner of a violation of the stormwater management ordinance. Within ten (10) days of receipt of this notice, a written explanation of the violation and a plan for the satisfactory correction and prevention thereof, to include specific required actions, shall be submitted by the owner to the director. Inspection to ensure performance of any corrective actions may be conducted by the director at his discretion. Submission of this plan in no way relieves the owner of liability for any violations occurring before or after receipt of the notice of violation.

Administrative Orders

Administrative orders (AO) are enforcement documents which direct owners to perform, or to cease, specific activities. Administrative orders may also invoke a penalty. There are three (3) primary types of administrative orders: consent orders; compliance orders; and cease and desist orders.

A show cause hearing should be offered prior to enforcement of an administrative order or assessment of damages or a civil penalty. The purpose of a show cause hearing is to provide a forum for the owner to present a defense to charges as outlined, or_{τ} for the director to obtain additional information from the owner to determine whether to proceed with enforcement.

<u>Consent orders</u> are entered into between the city and the owner to assure compliance as to specific actions to be taken by the owner to correct non-compliance within a specified time period. The director may enter into consent orders, assurances of voluntary compliance or other similar documents establishing an agreement with any owner responsible for noncompliance. Such documents shall include specific action to be taken by the owner to correct the noncompliance within a time period specified in the document. Such documents shall have the same force and effect as orders issued pursuant to Sections 38-87 and 38-.

<u>Compliance orders</u> may be issued when the director finds that an owner has violated,-or continues to violate, the ordinance or an order issued thereunder. It is similar to a consent order except that the consent of the owner is not implied in its issuance. When the director finds that an owner has violated or continues to violate any section of this article, or a permit or order issued under this article, the director may issue an order to the owner responsible for the violation directing that the owner come into compliance within a specified time, and such order may include assessment of a penalty to be paid if the owner does not come into compliance within the time provided. Compliance orders also may contain other requirements to address the noncompliance, including the construction of appropriate structures, installation of devices, self-monitoring and management practices designed to minimize the amount of pollutants discharged offsite. A compliance order does not relieve the owner of liability for any violation, including any continuing violation. Issuance of a compliance order shall not be a bar against or a prerequisite for taking any other action against the owner.

<u>Cease and desist orders</u> may be issued when the director finds that an owner has violated or continues to violate, the stormwater management ordinance or order issued thereunder. The order shall require that the owner:

(a) Comply forthwith; and

(b) Take such appropriate remedial or preventive action as may be needed or deemed necessary to properly address a continuing or threatened violation, including halting operations and terminating the discharge. Issuance of a cease and desist order shall not be a bar against or a prerequisite for taking any other action against the owner.

Administrative orders contain the following components:

(a) Title - The title specifies the type of order being issued (see below), to whom it is being issued, summarizes the purpose of the order, and contains an identification number.

(b) Legal Authority - The authority under which the order is issued (the stormwater management ordinance).

(c) The Finding of Noncompliance - All violations must be described including the dates, the specific permit and/or ordinance provisions violated, and any damages known and attributable to the violation.

(d) Required Activity - All orders should specify the required actions, such as installation of BMPs, additional inspections, appearance at show cause hearings, etc.

(e) Milestone Dates for Corrective Actions - When compliance schedules are appropriate, all milestone dates must be established including due dates for required written reports.

(f) Supplemental Clauses - The document should contain standard clauses which provide that:

1. Compliance with the terms and conditions of the administrative order shall not be construed to relieve the owner of its obligation to comply with applicable state, federal or local law, or the permit;

2. Violation of the administrative order itself may subject the owner to additional penalties as set out in the stormwater management ordinance;

3. No provision of the order shall be construed to limit the city's authority to issue supplementary or additional orders, or to take action deemed necessary to implement this program or ordinance;

4. The order shall be binding upon the owner, its officers, directors, agents, employees, successors, assigns, and all persons, firms or corporations acting under, through or on behalf of the owner.

Administrative orders issued as a result of a violation of the stormwater management ordinance shall contain a penalty as determined using Tables 'A' and "B" in this document. Administrative orders may also be used to advise an owner of the need to take, or cease, certain actions, and in such case, may or may not be associated with penalties as defined in the ordinance or in this guide.

In accordance with the City of Kingsport Code of Ordinances, section 38-342 a show cause hearing should be offered prior to enforcement of an administrative order or assessment of damages or a civil penalty. The purpose of a show cause hearing is to provide a forum for the owner to present a defense to charges as outlined, or for the director to obtain additional information from the owner to determine whether to proceed with enforcement. An owner may appeal the decision of the director to the stormwater appeals board as permitted by the City of Kingsport Code of Ordinances, section 38-343.

Civil Litigation

Pursuant to Section 38-343 of the stormwater management ordinance, the director may, through the city attorney, petition the appropriate court(s) for issuance of preliminary or permanent injunctions to restrain or compel activities by an owner.

Penalties, Administrative or Civil

The stormwater management ordinance authorizes assessment of penalties not to exceed \$5,000 per violation per day. Additionally, Section 38-87 of the ordinance authorizes the director to assess a civil penalty for actual damages incurred by the city. Before the enforcement of any administrative penalty, a show cause hearing must be offered to the owner.

If a violation results in conditions requiring the expenditure of public funds for mitigation of damages, a penalty shall be assessed in such amount as to offset the public funds so expended. This will in no way reduce or offset the liability of the owner with respect to damages incurred.

Explanation of Use of Tables

This guide is based primarily on the use of two tables; "A", and "B". Table "A" indicates how point values are assigned for each violation, considering the severity, duration, degree of harm, and compliance history of the owner. All possible violations may not be listed; however, this does not preclude an appropriate enforcement response.

In Table "A", three columns are associated with each listed violation -- the "Initial Points" column, the "Repeat Value" column, and the "Cumulative" column. If no history of violations is noted, the value in the "Initial Points" column may be used in conjunction with Table "B" to assess a typical response to the violation.

If the user has a history of similar violations, the initial point value plus the product of the number of previous occurrences times the repeat value should be used as shown in the following formula: Total Point Value (TP) = $P + (N \times R)$, where;

P = Initial Point Value for a single violation

N = Number of previous occurrences

R = Repeat Value from Table "A"

Should more than one violation be noted at a time, the cumulative column should be consulted. If violations are cumulative in nature, the sum of the individual point values should be used to judge the response. If not, the greatest individual values should be used to judge response, with the documentation for that response, however, noting all violations.

Once a point value is determined, Table "B" should be consulted for recommended responses. Table "B" provides a schedule of appropriate responses based upon the number of "points" determined by Table "A".

Example

An owner violates the terms of the stormwater management ordinance. This violation is considered significant and causes harm. Investigation reveals the owner has been cited twice in the past for the same violation: Total Point Value (TP) = $P + (N \times R)$

Therefore: $TP = 3 + (2 \times 1) = 5$

- Where 3 = Points charged for isolated but significant discharge from Table "A"
 - 2 = Number of previous occurrences; and
 - 1 = Repeat value from Table "A".

Resulting options: Civil injunction or administrative order with up to \$500.00 penalty.

TABLE "A" Response Guide for Violation

DESCRIPTION OF VIOLATION	INITIAL	REPEA	T
	<u>POINTS</u> VA	<u>CUMULATIVE</u>	
EROSION PREVENTION A	ND SEDIMENT (CONTROL	
Violation of a single requirement:			
Not significant	1	1	No
Significant, no harm	2	1	Yes
Significant, causes harm	3	1	Yes
Violation of more than one requirement:			
Not significant	2	1	Yes

Significant, no harm	3	1	Yes
Significant, causes harm	4	1	Yes
UNAUTHORIZED	DISCHARGE	ES	
Illicit Discharges:			
Owner unaware of requirement, no harm	1	N/A	No
Owner unaware of requirement, harm	2	N/A	No
Owner aware of requirement, no harm	2	1	Yes
Owner aware of requirement, harm	3	1	Yes
Illicit Connections:			
Owner unaware of requirement, no harm	1	N/A	No
Owner unaware of requirement, harm	2	N/A	No
Owner aware of requirement, no harm	2	1	Yes
Owner aware of requirement, harm	3	1	Yes
INSPEC			
Entry denied	2	2	Yes
Inspection Records			
Incomplete	1	2	No
Not available	1	2	No
MAINTEI	NANCE		
Failure to properly operate and			
maintain BMPs	1	1	Yes
STORMWATER	MANAGEMEI	NT	
Pre-Construction			
Failure to obtain NOC	2	1	No
Failure to obtain grading permit	2	1	No
Failure to provide performance bond 2		1	No
Construction			
Failure to provide water quality SCMs	2	2	No
Failure to provide channel protection 2		2	No
Failure to provide downstream impact			
analysis	2	2	No
Post-Construction			
Failure to provide special pollution			
abatement plan	2	2	No
Failure to provide as-built	2	2	No
Failure to provide covenant	2	2	No
TABLE	E "B"		
VIOLATION RES	PONSE GUIE	DE	
	ON		

POINT TOTAL	<u>ACTION</u>
1	Written warning
2	Notice of Violation
3	Administrative Order with up to \$150 Penalty
4	Administrative Order with up to \$300 Penalty
5	Administrative Order with up to \$500 Penalty
6	Administrative Order with up to \$1,000 Penalty
7	Administrative Order with up to \$2,000 Penalty

8	Administrative Order with up to \$3,000 Penalty
9	Administrative Order with up to \$4,000 Penalty
10	Administrative Order with up to \$5,000 Penalty

A cease and desist order may be issued at any time and a civil injunction may be requested at any time, for any violation, if in the opinion of the director in consultation with the city attorney, such action is justified, needed or appropriate.

Criminal Action

In cases where criminal acts are suspected by the director, after consultation with the city attorney, information shall be gathered and forwarded to the district attorney of the appropriate county for action. Criminal prosecution, if pursued, shall be in addition to other actions authorized by ordinance.

SECTION II. That this resolution shall take effect from and after its adoption, the public welfare requiring it.

ADOPTED this the 6th day of December, 2016. lart JOHN ATTEST: RK, Mayor APPROVED AS TO FORM: J. Michael BILLINGSLEY, Oity Attorney

APPENDIX C – Relevant Contacts

FEDERAL	STATE	LOCAL
Department of Agriculture Natural Resources Conservation Services (NRCS) 675 U.S. Courthouse 801 Broadway Nashville, Tennessee 37203 (615) 736-5477	TDEC – Environmental Field Office Johnson City Field Office 2305 Silverdale Road Johnson City, Tennessee 37601 (423) 854-5400	City of Bristol, TN Public Works & Engineering 212 Blackley Road Bristol, Tennessee 37620 (423) 989-5566
Department of Army U.S. Army Corps of Engineers Nashville District P.O. Box 1070 Nashville, TN 37202-1070 (615) 736-5181	TDEC - Department of Water Pollution Control L&C Annex, 6th Floor 401 Church Street Nashville, Tennessee 37243-1524 (615) 532-0625	City of Elizabethton Public Works 136 South Sycamore Street Elizabethton, Tennessee 37643 (423) 547-6341
Department of the Interior U.S. Geological Survey (USGS) 640 Grassmere Park, Suite 100 Nashville, TN 37211 (615) 837-4700	TDEC- Division of Water Supply L&C Tower, 6 th Floor 401 Church Street Nashville, Tennessee 37243-1549 (615) 532-0191	City of Johnson City Public Works 209 Water Street Johnson City, Tennessee 37601 (423) 434-6080
Federal Emergency Management Agency (FEMA) Region IV Mitigation Division Koger Center-Rutgers Building Atlanta, Georgia 30341 Maps: Toll free 1-877-fema-map General: 1-770-220-5200	Tennessee Wildlife Resources Agency (TWRA) Ellington Agricultural Center P.O. Box 40747 Nashville, Tennessee 37204 (615) 781-6643	City of Kingsport Engineering 1644 Fort Henry Drive Kingsport, Tennessee 37664 (423) 224-2727
U.S. Fish & Wildlife Service (USFWS) 446 Neal Street Cookeville, TN 38501 (931) 528-6481		

Table C-1. Contact Information for Relevant Government Agencies

This page left intentionally blank

APPENDIX D – Plan Submittal Checklists

Appendix D1 – Water Quality Management Plan Checklist Appendix D2 – Special Pollution Abatement Plan Checklist

This page left intentionally blank

WATER QUALITY MANAGEMENT PLAN CHECKLIST

Date:	Number of times reviewed (including this one):		
Project Name:	Type of review requested:		
Address:			
Zoning Classifications:	Variances?	_ Yes No	
Nature of Variances:			

This checklist presents the required elements of a water quality management plan. This checklist must be submitted to the local municipality along with the water quality management plan. Each element presented in this list must be checked "Yes", as applicable to the site. Checks placed under the "No" column must be justified in a written statement attached to this checklist. Elements of the water quality management plan that are not applicable for the site must be marked as "N/A".

GENERAL INFORMATION

Yes	No	N/A	1. Date(s) of preparation and any revision(s).
Yes	No	N/A	2. Seal/signature of responsible engineer.
			3. Vicinity map including:
Yes	🗌 No	N/A	a. North arrow
Yes	🗌 No	N/A	b. Scale
🗌 Yes	🗌 No	🗌 N/A	c. Adjacent roadways
🗌 Yes	🗌 No	🗌 N/A	d. Boundary lines of site
Yes	🗌 No	N/A	e. Onsite and nearby watercourses
🗌 Yes	🗌 No	N/A	f. Other necessary information to locate the development site
			4. Maps (to scale) which clearly show:
			a. The following lines with accurate bearings and distances:
🗌 Yes	🗌 No	🗌 N/A	- Property boundaries
🗌 Yes	🗌 No	N/A	- Lot lines
Yes	🗌 No	N/A	- Right-of-way lines of streets and/or Joint Public Easements
🗌 Yes	🗌 No	🗌 N/A	- Utility access or other easements
			b. The location of the
🗌 Yes	🗌 No	🗌 N/A	- 100-year floodplain
Yes	🗌 No	N/A	- 100-year regulatory floodway
🗌 Yes	🗌 No	🗌 N/A	- Required minimum floor elevations (MFEs)
Yes	No	N/A	c. An Environmental Features Inventory, which shows the boundaries of streams (stream names must be shown if known), wetlands, sinkholes, springs, steep slopes (≥15%), forested areas and
			grassed areas.
			d. Vegetated Buffers
Yes	🗌 No	N/A	- Location, width, outer boundary, and zone boundaries (on streams)
Yes	No		- The statement "Vegetated Buffer Area. Do Not Disturb" clearly shown.
Yes	🗌 No	🗌 N/A	- A description of the existng and proposed (if different from existing) vegetation in the vegetated
			buffer areas must be included on the site plan, or as a separate description. For example, a
			statement on the site plan such as "undisturbed forest vegetation", or "early successional forest"
			is sufficient for a stream buffer provided that the existing vegetation, in fact, meets one of these descriptions.
Yes	No	N/A	e. Dimensioned existing and proposed structures on and within 15 feet of the property boundaries
Ves	No	N/A	f. Roof drainage directions
Yes	No	 N/A	g. Finished floor and grade at foundation elevations of all existing structures
Yes	No	N/A	h. Cut and fill quantities for site work
			i. Impervious area information for the site
Yes	No	N/A	- For non-residential sites, and for residential subdivisions or lots where the location and footprint
			of impervious surfaces are known, provide location and footprint area for all impervious

GENERAL INFORMATION (CONTINUED)

			i. Impervious area information for the site (continued)
Yes	No	N/A	- For residential subdivisions where the location(s) and footprint(s) for buildings are unknown,
			provide the impervious footprint for roadways, and the assigned % impervious value(s) for the
			site, or different areas of the site, as appropriate for the lot-layout. Percent impervious values
			are found in Chapter 3 of this manual. This option can only be utilized for residential sites.
Yes	No	□ N/A	5. Construction notes, specifications, and design details for any existing stormwater system
			components
Yes	🗌 No	N/A	6. Recommendations included in the soils engineering or engineering geology report
			incorporated in the plans and/or specifications
Yes	No	N/A	7. Dates and reference number of the soils report(s) together with the names, addresses and
			phone numbers of the firm(s) or individual(s) who prepared the report(s)
Yes	No	N/A	8. Established benchmark of known elevation to which every other elevation is referenced
Yes	🗌 No	🗌 N/A	9. Horizontal control
🗌 Yes	🗌 No	🗌 N/A	10. The following statement is required on all water quality management plans:
			"Adequate drainage, erosion and sediment control measures, best management practices, and/or
			other water quality management facilities shall be provided and maintained at all times during
			construction. Damages to adjacent property and/or the construction site caused by the contractor's or

property owner's failure to provide and maintain adequate drainage and erosion/sediment control for the construction area shall be the responsibility of the property owner and/or contractor."

MAINTE	INANCE	INFOR	MA	TION
Yes	No	□ N/A	1.	A map that accurately identifies the water quality BMPs location and components (e.g., water quality basin, micropool extended detention basin, channels, swales, vegetated buffers, etc.) that are located on the property. This map also must show the locations of drainage and access easements. The language used to identify each BMP in the map must be consistent with the BMP names used in this Manual.
Yes	🗌 No	□ N/A	2.	"Inspection Checklist and Maintenance Guidance" sheet(s) for each type of BMP that is located on the property. At a minimum, the appropriate template checklist(s) provided in Chapter 4 of this Manual must be utilized. However, site designers may modify the templates to include inspections and maintenance elements as needed and appropriate for the BMPs.
Yes	No	N/A	3.	An executed copy of the Maintenance Covenants document
OTHER REQUIRED INFORMATION				

Yes No N/A 1. A copy of correspondence with the US Fish and Wildlfe office concerning any identified Endangered Species on the property.

 \Box Yes \Box No \Box N/A **2.** A copy of the Special Pollution Abatement Plan.

Special Pollution Abatement Plan

(Adapted from the City of Knoxville Land Development Manual, Appendix A, June 2006)

Please submit Check with Special Pollution Abatement Plan. Date:

Submit information for a Special Pollution Abatement Plan to comply with the following:

- A. Enter the legal or official name of the facility. Do not use colloquial name.
- B. Give the mailing address and physical location of facility. Determine watershed name, County block number and CLT number.
- C. For sections 1-10, include the supporting information in the box provided or attach an exhibit labeling which section it is in reference to. Provide complete data in a legible and clearly organized format.
- D. Verify that the certification on this plan is read, thoroughly understood, and signed by the appropriate persons.

A) Name of Facility:	
B) Mailing Address:	
Physical Location:	
Watershed Name:	
City Block Number:	
CLT Number:	

C) Supporting Information:

1. Name of contact person for plan compliance, including job title, address, and phone numbers. The contact person shall be responsible for keeping records of incidents such as significant spills of toxic pollutants or other discharges which may affect stormwater runoff quality. The contact person shall document and record all inspections and maintenance activities.

2. Description of faculty, nature of work performed, and type of facility.

3. Site map of facility with buildings, parking, drives, materials loading and access areas, dumpsters, type of each impervious surface, ditches, pipes, catch basins, drainage basin limits, area of facility, acreage of offsite water drainage onto facility, discharge points to "Water of the State" with name of the water or channel. This map will be a minimum scale of 1"=50'.

MUNICIPALITY USE ONLY

Date Received:	Reviewer:	
Plan Number:		

Form: SPAP 04/07

4. Submit a plan of instruction provided to employees at all levels within the company in methods to prevent stormwater runoff pollution. The plan shall identify periodic dates for such training and methods used. Submit a site-specific spill protection plan that deals with actual hazardous materials and emergency response equipment at the site.

5. A narrative description of significant materials (as defined by 40 CFR 122.26) that are currently or in the past have been treated, stored or disposed outside; method of onsite storage or disposal; materials management practices used to minimize contact of these materials with stormwater runoff for the past three years; materials loading and access area; material disposal area, location and description of existing structural and non-structural control measures to reduce pollutants in stormwater runoff; and a description of any treatment the stormwater receives.

6. Include a record of available sampling data describing pollutants in stormwater discharges. Carefully research using historical data from previous owner/operator, government records, and investigation reports.

7. Include a preventive maintenance program that includes regular inspection and maintenance of all stormwater management devices (such as cleaning grit chambers and catch basins). Maintenance program shall also include inspecting and testing plant equipment and systems to uncover conditions that could potentially cause breakdowns or failures resulting in discharges of pollutants to surface waters or to groundwater.

8. Submit a maintenance schedule of sweeping or vacuuming of facility to prevent washout from deposited emissions laden with hydrocarbons, oxides, salts, metals, worn pavement particulates, hydrocarbons for leaks and spills, trash, debris, garbage, metal, tire particles, brake lining particles and various chemicals from the wear and deterioration of vehicles. In the event of remedial work or action, submit a cleanup schedule for debris or material storage areas.

9. Description of other ways the facility plans to implement programs to reduce the discharge of pollutants to stormwater runoff. Provide estimated quantity of stormwater flow, direction of flow, and an estimate of the types of pollutants which are likely to be present in stormwater discharges associated with industrial activity for each area of the facility. Designate each area of the facility as having high, medium or low potential for stormwater pollution and explain rationale.

10. Include plans, details and specifications that show construction of new structures to protect discharge outfalls into "Waters of the State" or into "Community Waters". Common examples include an appropriately-sized grit chamber, oil skimmer, oil/water separator, media filtration inserts, etc. Vegetative measures such as grassed swales, constructed wetlands, existing woods or a detention basin are commonly used to supplement structural measures.

D) Certification and signatures:

CERTIFICATION AND SIGNATURE (MUST BE SIGNED BY PRESIDENT, OWNER, OR RANKING OFFICIAL)

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and attached exhibits. Based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine or imprisonment."

Printed Name: _

Signature: _

Date: _

ACCEPTANCE OF RESPONSIBILITY FOR PLAN COMPLIANCE (MUST BE SIGNED BY CONTACT PERSON)

"I also certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and attached exhibits. Based on my investigations, I believe that the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine or imprisonment."

Printed Name:	Title:
Signature:	Date:

- (a) Some facilities which are not yet constructed may not have selected a permanent contact person who will ultimately be responsible for plan compliance. In these instances, the contact person may be a technical person within the company who is generally responsible for environmental compliance issues.
- (b) The president, owner, or other ranking official who certifies this document is responsible for keeping local government up-to-date concerning the name of the contact person. The president, owner, or other ranking official who certifies this document is also responsible for notifying the local government if he is no longer an official with the company.

If any information changes or is subsequently found to be in error, please resubmit necessary pages of the Special Pollution Abatement Plan along with new signatures and dates.

Submit this plan with the Water Quality Management Plan for the proposed development or redevelopment.

This page left intentionally blank

APPENDIX E

Record Drawing Checklist

RECORD DRAWING CHECKLIST

Date:	Property owner:	
Certifying engineer:	Certifying surveyor (as-constructed):	
Project Name:		
Address:		
Proposed use of this property:		

The Record Drawing submittal process is necessary in order for a construction bond or performance bond to be released, as described in the Northeast Tennessee Water Quality BMP Manual.

GENERAL INFORMATION:

GENERAL INFORMATION:					
🗌 Yes	🗌 No	🗋 N/A	1. Does the title block have same project name, address, and contact persons as original plans?		
🗌 Yes	🗆 No	🗆 N/A	2. Are seal and signature for the certifying Engineer & Surveyor shown on the record drawings?		
□ Yes	🗆 No	□ N/A	3. Does each record drawing contain survey benchmarks or other reference points?		
🗆 Yes		□ N/A	4. Does each record drawing contain a north arrow, bar scale, and coordinates?		
□ Yes		□ N/A	5. Is construction complete and have disturbed areas been adequately stabilized to prevent soil		
		<u> </u>	erosion?		
🗌 Yes	🗆 No	🗆 N/A	6. Are the footprints for all impervious surfaces constructed as part of the approved Water		
🗆 Yes	🗆 No	□ N/A	Quality Management Plan?		
			7. Does each record drawing contain the following statement along with the Registered Land		
			Surveyors' stamp, signature, and license number:		
			I hereby certify that I have surveyed the land boundaries and easements shown hereon in accordance		
			with accuracy requirements for a Category I survey and that the ratio for precision of the unadjusted		
			survey is not less than 1:10,000. I further certify that I have located all natural and manmade features		
			shown hereon in accordance with the current Standards of Practice as adopted by the Tennessee		
			State Board of Examiners for Land Surveyors. I certify the location, elevation and description of these		
			features.		
🗌 Yes	🗌 No	🗆 N/A	8. Does each record drawing contain the following statement along with the registered Engineer's		
			stamp, signature, and license number:		
			Based on site observations and/or information provided by a registered Land Surveyor, I hereby		
			certify that all grading, drainage, structures, and/or systems, erosion and sediment control practices		
			including facilities, and vegetative measures have been completed in substantial conformance with		
			the approved plans and specifications.		
WATER					
			<u>es</u>		
WATEF	R QUAL	ITY BMF	2 <u>S</u> 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours		
🗌 Yes	🗆 No	□ N/A	 PS 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? 		
□ Yes	□ No	□ N/A	 25 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? 2. Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? 		
☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No	□ N/A □ N/A □ N/A	 25 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? 2. Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? 3. Are BMP and access easements shown and labeled? Are all conflicts avoided? 		
□ Yes	□ No	□ N/A	 25 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? 2. Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? 3. Are BMP and access easements shown and labeled? Are all conflicts avoided? 4. Does the plan include accurate details of outlet structures, including all orifices and weirs, 		
☐ Yes ☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No □ No	□ N/A □ N/A □ N/A □ N/A	 2S 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? 2. Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? 3. Are BMP and access easements shown and labeled? Are all conflicts avoided? 4. Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? 		
☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No	□ N/A □ N/A □ N/A	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum 		
☐ Yes ☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No □ No	□ N/A □ N/A □ N/A □ N/A	 2S 1. Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? 2. Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? 3. Are BMP and access easements shown and labeled? Are all conflicts avoided? 4. Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? 		
 Yes Yes Yes Yes Yes 	 No No No No No 	□ N/A □ N/A □ N/A □ N/A	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? 		
☐ Yes ☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No □ No	□ N/A □ N/A □ N/A □ N/A	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume 		
 Yes Yes Yes Yes Yes 	 No No No No No 	□ N/A □ N/A □ N/A □ N/A	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? 		
 Yes Yes Yes Yes Yes Yes 	 No No No No No 	 □ N/A □ N/A □ N/A □ N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume 		
 Yes Yes Yes Yes Yes 	 No No No No No 	□ N/A □ N/A □ N/A □ N/A	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support 		
 Yes Yes Yes Yes Yes Yes 	 No No No No No 	 □ N/A □ N/A □ N/A □ N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? 		
 Yes Yes Yes Yes Yes Yes 	 No No No No No 	 □ N/A □ N/A □ N/A □ N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? Do water quality BMPs provide for the attenuation of the local jurisdiction peak discharge 		
 Yes Yes Yes Yes Yes Yes 	 No No No No No 	 □ N/A □ N/A □ N/A □ N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? Do water quality BMPs provide for the attenuation of the local jurisdiction peak discharge storm events in accordance with the prevailing water quality regulations? Are computations provided adequate to prove attenuation? Has minimum freeboard of 1 foot been provided between 100-year storm and top of berm? 		
 Yes Yes Yes Yes Yes Yes 	 No No No No No No 	 N/A N/A N/A N/A N/A N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? Do water quality BMPs provide for the attenuation of the local jurisdiction peak discharge storm events in accordance with the prevailing water quality regulations? Are computations provided adequate to prove attenuation? 		
 Yes Yes Yes Yes Yes Yes Yes Yes 	 No No No No No No 	 N/A N/A N/A N/A N/A N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? Do water quality BMPs provide for the attenuation of the local jurisdiction peak discharge storm events in accordance with the prevailing water quality regulations? Are computations provided adequate to prove attenuation? Has minimum freeboard of 1 foot been provided between 100-year storm and top of berm? 		
 Yes Yes Yes Yes Yes Yes Yes Yes 	 No No No No No No 	 N/A N/A N/A N/A N/A N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? Do water quality BMPs provide for the attenuation of the local jurisdiction peak discharge storm events in accordance with the prevailing water quality regulations? Are computations provided adequate to prove attenuation? Has minimum freeboard of 1 foot been provided between 100-year storm and top of berm? Are manufacturer's identification number, model, and size for all proprietory BMPs shown on the plans? 		
 Yes 	 No No No No No No No No 	 N/A N/A N/A N/A N/A N/A N/A N/A 	 Do all plan views correctly show water quality BMPs at a readable scale, with 1-foot contours where 2-foot contours do not show sufficient detail? Are locations and invert elevations for all pipe/ditch outfalls into water quality BMPs shown? Are BMP and access easements shown and labeled? Are all conflicts avoided? Does the plan include accurate details of outlet structures, including all orifices and weirs, such as size, diameter, invert elevation, means of anchoring, underdrain systems, etc? Do water quality BMPs provide for the treatment of the water quality volume to a minimum standard of 80% TSS removal, in accordance with the Northeast Tennessee Water Quality BMP Manual? Are computations provided that are adequate to support 80% TSS removal? Do water quality BMPs provide for the capture and discharge of the channel protection volume over no less than a 24-hour period? Are computations provided that are adequate to support the channel protection standard? Do water quality BMPs provide for the attenuation of the local jurisdiction peak discharge storm events in accordance with the prevailing water quality regulations? Are computations provided adequate to prove attenuation? Has minimum freeboard of 1 foot been provided between 100-year storm and top of berm? Are manufacturer's identification number, model, and size for all proprietory BMPs shown on 		

RECORD DRAWING CHECKLIST (cont'd)

WATER QUALITY BMP INSPECTION and MAINTENANCE:

	WHER GOALTT BIN NOT LOTION UNA MAINTENANCE.					
🗆 Yes	🗆 No	🗆 N/A	1. A map that accurately identifies the water quality BMPs location and components (e.g., water quality			
			basin, micropool extended detention basin, channels, swales, vegetated buffers, etc.) that are located			
			on the property. This map also must show the locations of drainage and access easements. The			
			language used to identify each BMP in the map must be consistent with the BMP names used in this			
			Manual.			
🗌 Yes	🗆 No	□ N/A	2. "Inspection Checklist and Maintenance Guidance" sheet(s) for each type of BMP that is located on			
		<u> </u>	the property. At a minimum, the appropriate template checklist(s) provided in Chapter 4 of this			
			Manual must be utilized. However, site designers may modify the templates to include inspections			
			and maintenance elements as needed and appropriate for the BMPs.			
🗆 Yes	🗆 No	🗆 N/A	 An executed copy of the Maintenance Covenants document 			
			3. An executed copy of the Maintenance covenants document			
VEGETATED BUFFERS						
Yes	🗌 No	🗆 N/A	1. Are vegetated buffers shown and labeled correctly on drawings (outer boundaries and zone			
			boundaries, if applicable, should be shown)?			
🗌 Yes	🗌 No	🗆 N/A	2. Are vegetated buffer areas clearly marked on the plan with the statement "Vegetated Buffer. Do			
			Not Disturb."?			
🗌 Yes	🗌 No	🗆 N/A	3. Have permanent markers been installed correctly on the site?			
_			· · · · · · · · · · · · · · · · · · ·			

N/A
 4. Is the type of legal instrument (convenants, deed restriction, etc.) that will be used to serve and maintain the buffer stated on the drawing?

WATER QUALITY CREDIT AREAS

□ Yes

□ Yes

Yes

Yes

Yes

🗌 Yes

🗆 No

🗌 No

🗌 No

🗆 No

🗌 No

The following questions pertain to water quality credit areas only.

evelopment of this site (check all that apply).

- □ 1. Natural area preservation credit
- □ 2. Managed area preservation credit
- □ 3. Stream and vegetated buffers credit
- 4. Vegetated channels credit
- 5. Impervious area disconnection credit
- 6. Environmentally sensitive large-lot neighborhood credit
- □ N/A 2. For credits 1, 2, 3, and 6: Does the plan clearly show the outer boundaries of all open spaces,
- Yes No
 Yes No
 Yes No
 Yes No
 N/A
 A. For credit 2: Does the plan include a Vegetative Management Plan that indicates how the vegetation in the Managed Area will be managed in a stormwater-friendly manner?
 Yes No
 N/A
 A. For credits 4 and 6: Are the location of the vegetated channels clearly indicated on the drawing
 - A. For credits 4 and 6: Are the location of the vegetated channels clearly indicated on the drawing and constructed in conformance with design requirements stated in the Northeast Tennessee Water Quality BMP Manual? Provide slope, length, size, and vegetation type (e.g., fescue grass, Bermuda grass, etc.).
 - □ No □ N/A 5. For credits 5 and 6: Are locations of disconnected downspouts clearly indicated on the drawings and labeled with the statement "This downspout shall remain disconnected from the impervious surfaces and shall forever be discharged onto pervious surfaces".
 - N/A 6. For credits 5 and 6: Do impervious area disconnections conform to the design requirements stated in the Northeast Tennessee Water Quality BMP Manual?
 - \square N/A 7. For credit 6, are the maximum lot density, the total impervious cover percentage, and open spaces shown and correctly labeled on the drawings?

N/A 8. For credit 6, is the type of legal instrument (convenants, deed restrictions, etc.) that will be used to limit imperviousness and open space development in the neighborhood indicated on the drawing?

APPENDIX F

Maintenance Covenants

This Appendix contains a blank copy of the "Covenants for Permanent Maintenance of Water Quality Facilities and Best Management Practices".

This page left intentionally blank

This instrument was prepared by: J. Michael Billingsley, City Attorney 225 West Center Street, Kingsport, Tennessee 37660

DECLARATION OF COVENANTS FOR PERMANENT MAINTENANCE OF STORMWATER MANAGEMENT FACILITIES

This DECLARATION made and executed by ______, (identify as an individual/a Tennessee or other state corporation/partnership/limited liability corporation, etc.) (hereinafter "Declarant") establishes and grants these Covenants for Permanent Maintenance of Stormwater Management Facilities (hereinafter "Covenant") on this the __ day of _____, 20___.

WITNESSETH:

WHEREAS, Declarant is the fee simple owner of the property (hereinafter "Property") described herein; and

WHEREAS, Declarant agrees that the permanent maintenance of Stormwater Management Facilities located on the Property is for the mutual interest and concern to all Owners of the Property; and

WHEREAS, the Declarant desires for the Property to be subject to all terms, obligations, conditions, restrictions, easements, and covenants set forth herein; and

WHEREAS, the City of Kingsport, (hereinafter "City") under various state and federal laws, is required to regulate the maintenance of Stormwater Management Facilities constructed to serve development or redevelopment, as those terms are defined in Kingsport City Code Section 38-85 *et seq.* within the corporate limits of the City to ensure that, following initial construction, the Stormwater Management Facilities are operated, maintained, and, to the extent necessary, repaired in accordance with applicable local, state, and federal law; and

WHEREAS, the City may be subject to substantial regulatory and financial penalties from the State of Tennessee and the federal government if the regulation of stormwater drainage and Stormwater Management Facilities are not applied to development and redevelopment occurring in the corporate limits of the City; and

WHEREAS, the board of mayor and aldermen of the City has determined through its enactment of the Kingsport City Code, Section 38-85 et seq., that to maintain the City's compliance under applicable state and federal regulations, certain obligations must be met by developers and subsequent owners of Stormwater Management Facilities constructed to benefit Property Owners and the City; and

WHEREAS, Declarant intends to construct one or more Stormwater Management Facilities that will serve the Property and benefit one or more Owners of the Property (or any portion thereof), thereby requiring this Covenant on the Property, pursuant to the requirements of Kingsport City Code Section 38-139(h).

NOW THEREFORE, Declarant hereby declares that the Property hereinafter described is and will be held and conveyed subject to the following terms, obligations, conditions, restrictions, easements, and covenants, all of which are for the purpose of enhancing and protecting the value, function, and attractiveness of the Property; and also as a condition of the approval of a Stormwater Management Plan by the City, therefore, the Declarant warrants, covenants, and grants as follows:

Section 1. The Declarant warrants it is the fee simple owner of the following described Property, to-wit:

SITUATED in the _____ Civil District of _____ County, Tennessee, and more particularly described as follows:

[Description of Property]

AND BEING the same property conveyed to [Declarant's name] by deed of [Name of Grantor to Declarant] dated ______ and recorded in Deed Book _____, Page _____ in the Office of the Register of Deeds for _____ County, Tennessee, to which reference is here made.

MAP AND PARCEL NO.: [Tax map, Group and Parcel No.]

Section 2. Words used in the singular will include the plural, and the plural will include the singular, and words used in the present tense will include the future tense. As used in this Covenant the following words and terms have the following meanings:

(a) "Best Management Practices" means schedules of activities, prohibitions of practices, maintenance procedures, structural controls and other management practices designed to prevent or reduce the pollution of waters of the United States. Best Management Practices includes structural devices, such as Stormwater Management Facilities, or non-structural practices such as buffers or natural open spaces.

(b) "City" means the City of Kingsport, Tennessee.

(c) "City Approval" means the written approval of the City, as given by the Kingsport City Engineer, or designee, on the applicable document or plat.

(d) "Code" or "Kingsport City Code" means Code of Ordinances, City of Kingsport, Tennessee, as it may be amended from time to time.

(e) "Declarant" means the Person identified as the Declarant hereinabove and includes its successors and assigns, and any Person who has the powers of a Declarant established in a Successive Document, and its successors and assigns. Declarant is also a Property Owner until divested of all title to all of the Property.

(f) "Governmental Authority" or "Governmental Authorities" means the City, the County, the State of Tennessee, the United States of America having jurisdiction over any part of the Property, and all applicable departments and agencies of the same.

(g) "Maintain", "Maintenance", "Maintaining", or any similar term used herein means any one or more of the following, as the context requires: acquiring, administering, altering, cleaning, constructing or re-constructing, examination, improving, inspecting, installing, maintaining, mowing, cutting, trimming, pruning, fertilizing, planting, preserving, purchasing, operating, remodeling, removing, renewing, repainting, replacing, restoring, using, or watering.

(h) "Owner" or "Property Owner" means the record Owner, now or in the future, whether one or more Persons, of fee simple title to any part of the Property.

(i) "Person" means any natural person, corporation, estate, trust, partnership, limited liability company, association, joint venture, Governmental Authority (including the City), or other entity.

(j) "Property" or "Properties" means all or any part of the real property described herein.

(k) "Stormwater Management Facilities" or "Facilities" means structures and constructed features designed for the collection, conveyance, storage, treatment, and disposal of stormwater runoff into and through the stormwater system. Stormwater Management Facilities include but is not limited to structural or nonstructural measures, or both, to control the increased volume, rate and quality of stormwater runoff caused by manmade changes to the land. It also includes Best Management Practices.

(I) "Stormwater Management Plan" sometimes referred herein to as "Plan" means an engineering plan that has city approval for the design of Stormwater Management Facilities and Best Management Practices for a proposed development or redevelopment that has city approval.

(m) "Subsequent Document" means any document, map, or plat affecting or encumbering any part of the Property after this Covenant is recorded in the Office of the Register of Deeds.

Section 3. The Declarant or Property Owner desires to develop all or a portion of the Property in accordance with the approved Plan.

Section 4. The Declarant or Property Owner will construct and maintain the Stormwater Management Facilities in strict accord with the Plan, specifications, calculations, and conditions required by the City.

Section 5. To ensure that subsequent Property Owners have notice of this Covenant and the obligations therein, the Declarant or Property Owner will include in all instruments conveying any or all of the Property an encumbrance referencing this Covenant and any plat regarding part or all of the Property by the book and page number shown in the Office of the Register of Deeds.

Section 6. The Declarant or Property Owner will provide for continued operation and maintenance of the approved Facilities in accordance with and as described in the Plan to ensure the Facilities remain in proper working condition, and comply with approved design standards and all applicable rules and regulations. The Declarant or Property Owner will perform such maintenance activities as described in the Plan, along with necessary landscaping (e.g., vegetation planting or removal, etc.) and trash removal as part of regular maintenance. At all times, the Facilities will comply with all applicable laws, ordinances, regulations, rules, and directives of Governmental Authorities, including, but not limited to, the Code, and it is the responsibility of each Property Owner to ensure such compliance.

Section 7. The Declarant or Property Owner grants to the City, or the City's designee, a non exclusive easement as shown in the Plan for the unrestricted right of access to the Facilities, including its immediate vicinity, and ingress and egress to and from said Facilities, at any time for any duration the City needs for the purpose of inspection, sampling, testing, and maintenance of the Facilities. The City will make reasonable efforts to minimize or avoid interference with Declarant's or Property Owner's use of the Property. It is specifically understood and agreed that the City is under no obligation to maintain or repair the Facilities and nothing herein will be construed to impose any such obligation or duty on the City. The Declarant and Property Owner further covenant that no structure or building will be erected on the access easement; that no woody vegetation will be allowed to grow on the access to the Facilities. If access to the Facilities is obstructed and the City is required to remove the obstruction, the Property Owner will be liable for the cost of removal.

Section 8. If the City determines that the Facilities are not being maintained in good working order, the City will provide written notice to the current Property Owner to repair, replace, reconstruct, or maintain the Facilities within a reasonable time frame. The Declarant or Property Owner grants to the City, or the City's designee, the right to enforce these covenants by resort to the Tennessee Court for damages and injunctive relief as needed to require compliance with these Covenants.

Section 9. (a) If the City determines that the Declarant or Property Owner is not maintaining the Facilities as required by this Covenant and the Plan, the City may and is authorized, after thirty (30) days written notice thereof, to seek enforcement by court action or to enter upon the Property to cause or perform, at the Declarant's or Property Owner's expense, any and all maintenance to the Facilities necessary under the requirements specified in this Covenant or the Plan. The notice provided herein will be effective on the date sent by U.S. Mail or certified mail, to the record Property Owner of the Property as shown on the most recent tax roll.

(b) Property Owner further authorizes the City to place a lien on the Property for all the costs of any maintenance incurred by the City plus fifteen percent (15%) to cover the cost of administration. All such costs, including administrative costs, will accrue interest from the date incurred by the City at the maximum rate authorized by law until paid in full. In addition the City may pursue any enforcement action for the failure to maintain the Facilities, including administrative penalties.

(c) If the Property Owner fails to pay the City after forty-five (45) days written notice, the Property Owner authorizes the City to collect the costs from the Property Owner through the appropriate legal action, and the Property Owner will be liable for the reasonable expenses of collection, court costs, and attorney fees of the City for such action.

(d) Property Owner recognizes that this remedy does not obligate the City to maintain or repair any Facilities or restrict the City from pursuing other or additional legal remedies against the Property Owner, and the actions described in this section are in addition to and not in lieu of any and all legal remedies as provided by law, available to the City as a result of Declarant's or Property Owner's failure to maintain the Facilities.

Section 10. Each Property Owner will be jointly and severally responsible for maintenance of the Facilities, including payment of any unpaid *ad valorem* taxes; public assessments for improvements, and unsafe building and public nuisance abatement liens charged against the Facilities; any maintenance of the Facilities; and all interest charges thereon, together with the costs and expenses of collection incurred by themselves (or other collecting agent), including court costs and reasonable attorney's fees actually incurred. Each Property Owner has a right of contribution against all other Property Owners for payment of all such costs and expenses set out above to the extent that the Property Owner having such right of contribution pays more than such Property Owner's pro rata share thereof, such pro rata share being determined either by other assessment provisions for maintenance of Facilities established in Successive Documents or, if such does not exist, by dividing the acreage of such Property Owner's portion of the Property by the total acreage of the Property.

Section 11. If the Declarant or Property Owner fails to maintain the Facilities as required to the standards specified in Plan, then the City may require the Declarant or Property Owner at their sole cost, to post security in a form, for a time period, and in an amount satisfactory to the City, to guarantee the Declarant's or Property Owner's performance of the obligations set forth herein. Should the Declarant or Property Owner fail to perform the obligations under this Covenant, the City may collect against said security. In the case of a cash bond or a letter of credit the City may act for the Declarant or Property Owner's reimbursement obligation contained herein and for the City's administrative expenses. In the case of a surety bond the City may require the sureties to perform the obligations of this Covenant.

Section 12. Recognizing the consequences to the City for non-compliance with the obligations of this Covenant, Declarant or Property Owner hereby grants the City the right to seek, in any court of appropriate jurisdiction, judicial action for specific performance of any of the obligations established in this Covenant. This right of the City will not limit any other remedies or enforcement options available to the City including those under the Code, any other applicable law.

Section 13. Declarant dedicates, establishes, and declares to and for the benefit of each Property Owner the following:

(a) a perpetual, irrevocable, and non-exclusive easement, right and privilege to discharge, transport, treat, and store surface water drainage from any portion of the Property into, over, under, across, through, and upon the Stormwater Management Facilities and private drainage easements; and

(b) a perpetual, irrevocable, and non-exclusive easement, right and privilege to use and maintain Facilities, including the right of access to and from the Facilities, private drainage easements, and other portions of the Property as reasonably necessary to maintain the Facilities located on the

property; and

Section 14. Declarant or Property Owner hereby agrees and acknowledges that maintenance of the Facilities as set forth herein, the costs of maintenance, the City's access to the Facilities, the City's rights of ingress and egress to the Facilities, and the recovery of costs if Declarant or Property Owner fails to maintain the Facilities as herein set forth, are a burden and restriction on the use of the Property. The provisions of this Covenant will be enforceable as an equitable servitude and as conditions, restrictions and covenants running with the land, and will be binding upon the Declarant and upon each an all of its respective heirs, devisees, successors, and assigns, officers, directors, employees, agents, representatives, executors, trustees, successor trustees, beneficiaries, and administrators, and upon any future Owners of any part of the Property, jointly and severally.

Section 15. It is the express intent of the Declarant that the terms and provisions of this Covenant will be enforceable as an equitable servitude by Declarant or Property Owner. The Declarant hereby confers and assigns the rights to enforce the terms and conditions of this Covenant to the City.

Section 16. The Declarant hereby covenants that the burdens and benefits herein made and undertaken and this Covenant are permanent, will run with the land and constitute an encumbrance on the Property and will be binding on all parties holding or acquiring any right, title, or interest in the Property, or any part thereof, whether or not so expressed in any deed or other conveyance, and shall inure to the benefit of each Owner thereof and the City.

Section 17. The Declarant will record a plat showing and accurately defining the easements for Facilities and the access easement to these Facilities. The plat must reference the instrument number, where this Covenant is recorded, and contain a note that the Property Owner is responsible for maintaining the Facilities pursuant to this Covenant. A plat is required for all commercial development or redevelopment, even if less than one acre in size. A plat is required for all development or redevelopment of a residential lot if the lot is greater than one acre or if the lot is a part of a larger development plan, meaning a development of two or more lots, regardless of size.

Section 18. The Declarant will record these Covenants in the Office of the Register of Deeds in the county where the property lies and return the original to the City before the final plat is signed by the City, before all or any portion of the Property is transferred or conveyed, or before any permits are issued by the City.

Section 19. The Declarant or Property Owner, its successors and assigns, shall have the obligation to construct and complete all the Facilities as required by the City.

Section 20. The Property, this Covenant, and all provisions of Successive Documents and other separately recorded instruments applicable to the Property (or any portion thereof) are subject to the ordinances, regulations, and rules of the City, and will be construed in accordance with all of the applicable provisions of the Code, whether or not such Code provisions are specifically referenced in this Covenant or in any Successive Document. It will be the responsibility of each Property Owner to comply with all provisions of the Code applicable to the Property. No Successive Document may avoid, vary, negate, or waive the obligations and rights of the Declarant, any Property Owner or the City without an amendment to this Covenant with City Approval.

Section 21. (a) The provisions of the Code control over any inconsistent provisions of this Covenant or any Successive Document. As applicable provisions of the Code are amended, modified, revised, deleted, or moved to different sections, this Covenant is deemed to be revised so as to conform to the provisions of the Code as they exist from time to time and are applicable to the Property or any part thereof.

(b) The provisions of this Covenant will control over any inconsistent provisions of any Successive Document. To the extent that any Successive Document affecting the Property conflicts with the provisions of the Code or the Tennessee Code Annotated, the conflicting provision will be

automatically cured to comply with the Code and the Tennessee Code Annotated. To the extent the requirements of the Code and the Tennessee Code Annotated conflict, the Tennessee Code Annotated will prevail and apply.

(c) Allocation of assessment obligations among Owners in any Successive Document will not constitute a conflict with this Covenant. Provided, however, the rights of the City in this Covenant, including, without limitation, the rights of the City to enforce liens and collect monies from an Owner or Owners, will not be impaired or adversely affected by any such allocation of assessment obligations in any Successive Document.

Section 22. Any amendment of this Covenant must have City Approval. Amendments to this Covenant are valid only with City Approval and only from the time of recording in the appropriate Office of the Register of Deeds. Any amendment of this Covenant that requires City Approval is void *ab initio* if recorded without the required City Approval.

TO HAVE AND TO HOLD the covenants agreed to and the terms, obligations, conditions, restrictions, easements, and covenants imposed herein so that such will be binding upon the Declarant, its successors and assigns, and will continue as a servitude running with the land in perpetuity. Declarant covenants that it is vested of the Property in fee simple; that it has the right to convey the same in fee simple; that the Property is free from encumbrances except as hereinafter stated; and that Declarant will warrant and defend such title to the same against claims of all persons whatsoever. Title to the Property is subject to the following: all utility rights-of-way and easements recorded in the Office of the Register of Deeds; plats of any part or all of the Property recorded in the appropriate Office of the Register of Deeds; and restrictive covenants affecting any part or all of the Property that were recorded in the Office of the Register of the Register of Deeds prior to the recording of the deed to the Declarant that conveyed the Property to the Declarant.

Declarant acknowledges that the City is acting in reliance on (1) Declarant's authority to enter into this Covenant; and (2) the terms, obligations, conditions, restrictions, easements, and covenants imposed herein in approving subdivision of the Property; or in the issuance of any permit or development approval associated with any construction of improvements on the Property, and Declarant further acknowledges that the City may suffer irreparable harm from the violation of the terms, obligations, conditions, restrictions, easements, and covenants, restrictions, and obligations established herein.

IN WITNESS WHEREOF, Declarant signs its name and affixes its seal on the day and year first above written.

STATE OF _____: COUNTY OF _____:

Before me, the undersigned authority, a Notary Public in and for the State and County aforesaid, personally appeared ______, the property owner, with whom I am personally acquainted, (or proved to me on the basis of satisfactory evidence), and who, upon oath, executed the foregoing instrument for the purposes therein contained.

WITNESS my hand and official seal at office in Sullivan County, Tennessee this the _____ day of _____, 2018.

NOTARY PUBLIC

My Commission Expires:

APPROVED: _____

DATE: _____

CITY OF KINGSPORT, TENNESSEE