Your Water

to know it is to it

Water Department

Annual Water Quality Report

2010 2011 2012

2013

Directors Award

City of Kingsport Kingsport Water Treatment Plant

ognition for your commitmon superior water quality.

Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted. O hable con alguien que lo entienda.

Dear Customer,

The Kingsport City Water Department continually strives to provide its customers the safest drinking water possible. This brochure is a summary of the quality of water provided by the Water Department to its customers last year. It is a report reflecting the department's hard work and dedication to bringing you water that is absolutely safe to drink.

Included in this summary is information about where your water comes from, what it contains, and how it compares to standards forth by the State of Tennessee and the United States Environmental Protection Agency (USEPA).

The Water Department is committed to providing you, our customers, the safest, cleanest drinking water possible. We believe customers who are well informed are our best allies in supporting improvements necessary to maintain high water quality standards.

Kingsport Water Department

The DIRECTOR'S AWARD of recognition, issued by the Partnership for Safe Water Program (an association of Water utilities and government), has been awarded to the City of Kingsport's Water Treatment Plant, for its' efforts to achieve excellence in water quality far beyond what is required by federal regulations.

Origin

Your water, which is surface water, comes from the South Fork Holston River. Our goal is to protect our water from contaminants and we have worked with the State to determine the vulnerability of our water source to potential contamination. The Tennessee Department of Environment and Conservation (TDEC) has prepared a Source Water Assessment Program (SWAP) Report for the untreated water sources serving this water system. The SWAP Report assesses the susceptibility of untreated water sources to potential contamination. To ensure safe drinking water, all public water systems treat and routinely test their water. Water sources have been rated as reasonably susceptible, moderately susceptible or slightly susceptible based on geologic factors and human activities in the vicinity of the water source. The Kingsport Water System sources rated as reasonably susceptible to potential contamination.

An explanation of Tennessee's Source Water Assessment Program, the Source Water Assessment summaries, susceptibility scorings and the overall TDEC report to the EPA can be viewed online at -

https://www.tn.gov/environment/article/wr-wq-source-water-assessment or you may contact the Water System to obtain copies of specific assessments.

WHO DO I CALL?

If you are interested in learning more about the Water Department, or participating in the decision-making process, contact our Community Relations and Training Officer at 229-9413. The Board of Mayor & Aldermen meets on the 1st and 3rd Tuesday of each month at 7:00 p.m. in the City Hall Conference Room. This grants opportunities for the general public to voice opinions and/or concerns about decisions that affect the quality of their drinking water.

Questions concerning your bill, arranging for water service or re-establishing service?
Call Customer Service at 229-9416 or 229-9417.

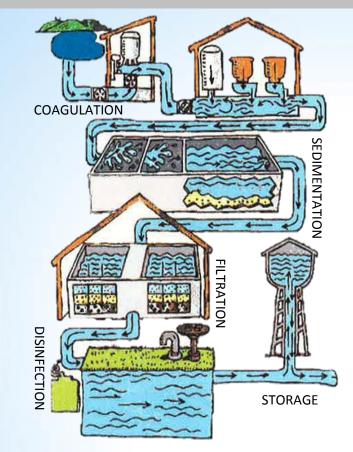
After hours emergency 246-9111

To report water quality problems, low pressure, a broken water main, water leak in the streets or at the meter: Call Customer service at 229-9416 or 229-9417.

Questions about this report: Contact Ron Haynes at 229-9410.

Questions or concerns about a potential cross connection? Contact Jason Starnes at 229-9454.

To report suspicious activity to any water facility, including treatment plants; water storage tank, fire hydrants, etc. Call 911 or 229-9452.


For more information about the Storm Water Program or to report illegal discharges into the storm drain system -Call (423) 224-2727.

Cross Contamination Control

Over the next few months, the warm weather will bring people outdoors to work in their yards and gardens and begin getting swimming pools ready. The Kingsport Water System would like to ensure that our customers are aware of the dangers associated with these activities. An ordinary garden hose is a common way to contaminate a water supply. When the hose is submersed in any liquid or attached to certain devices used to spray pesticides or herbicides, this forms a cross connection. A cross connection is a situation where a possible source of contamination is directly linked to our public water system. If the end of your hose is connected to a chemical container, swimming pool or other contaminant during a water main break or fire, the substance can be siphoned back into the water system. This condition, known as back siphonage, could cause a public health hazard. Devices are available to prevent this problem; however the best solution is to always be careful how you use your water hose.

Please help us provide a safe supply of water to all of our customers. Remember: never place your water hose in anything you would not want to drink. For information on cross connections, and how to protect against them, call our office at (423) 224-2635.

A Treatment System

Safety Standards

Is MY water safe to drink?

The presence of contaminants does not necessarily indicate that the water poses a health risk. Most drinking water, including bottled water, contains small amounts of some contaminants. In order to ensure your tap water is safe, the Environmental Protection Agency (EPA) and Tennessee Department of Environment and Conservation prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health; however, they are not required to submit a water quality report to the public.

We are proud to report that Kingsport's water meets or surpasses all EPA and State health regulations. As demonstrated by the test results, the Kingsport Water Department conducts regular tests for numerous contaminants, and has found few. The existing contaminants are all well below the maximum safe levels. At the treatment plant, shortly after the "raw" (untreated) water is pumped to the treatment plant it enters the flash mix where it is treated with both chlorine and a coagulant.

Beginning chlorination here allows the chlorine a longer contact-time, thus giving the chlorine more time to react with microorganisms. Coagulants cause light, fine materials suspended in the water to clump together into larger heavier particles.

Next, the slow flow thru the sedimentation basin allows the heavier particles to settle out. Sedimentation removes the majority of the sediment from the water.

Filtration, the next step, removes the remaining suspended material, lowering the turbidity level to well below the state's maximum containment level (mcl). The filtered water is then treated with chlorine for disinfection and fluoride to reduce tooth decay.

The "finished" water is then pumped into the distribution system for public use.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Kingsport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (1-800-426-4791) or by visiting Safe Drinking Water at -

http://www.epa.gov/safewater/lead

Kingsport's water samples for lead and copper were all well below EPA's action level.

Definitions & Abbreviations

<u>AL</u> — Action Level, or the concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

BDL — Below Detection Limit.

<u>MCL</u> — Maximum Contaminant Level, or the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

<u>MCLG</u> — Maximum Contaminant Level Goal, or the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>MRDL</u> — Maximum Residual Disinfectant Level, or the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for the control of microbial contaminants.

<u>MRDLG</u> — Maximum Residual Disinfectant Level Goal, or the level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<u>TT</u> — Treatment Technique, or a required process intended to reduce the level of a contaminant in drinking water. Example: Kingsport adds a zinc—orthophosphate corrosion inhibitor to the drinking water to create a type of barrier in the underground lines and lines in the individual homes. This barrier comes between the flowing water and the pipe it is flowing through in order to keep contaminants that may come from the pipes from entering the water.

<u>Turbidity Level</u> — A measure of the cloudiness of water; it is a good indicator that our filtration system is functioning properly.

<u>Units of Measure</u> — Definitions for units of measure used in the CCR:

- i. <u>ppm or mg/L</u> Parts per million or milligrams per liter, explained in terms of money as one penny in \$10,000.
- i. <u>ppb or mcg/L</u> Parts per billion or micrograms per liter, explained in terms of money as one penny in \$10,000,000.
- i. <u>pCi/L</u> Picocuries per liter (a measure of radio activity).
- i. <u>NTU</u> Nephelometric Turbidity Units—Turbidity is a measure of the clarity of the water. Turbidity in excess of 5 NTUs is just noticeable to the average person.

¹100% of our samples were below the turbidity limit.

1ppb = 1 pinch of salt in a 10 ton bag of chips

²Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (1-800-426-4791).

³ Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and if untreated may die. Symptoms include shortness of breath and blue baby syndrome.

⁴While your drinking water meets EPA's standard for trihalomethanes, it does contain low levels. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

⁵We have met all treatment technique requirements for Total Organic Carbon removal.

Water Quality Data

Your drinking water is regulated by the Tennessee Department of Environment and Conservation (TDEC) and the Environmental Protection Agency (EPA). The Kingsport Water Department regularly monitors for over 80 regulated contaminants to make sure your drinking water is safe. The results of our 2015 water quality monitoring are shown in the following tables. The substances listed in the tables below are the only substances that were detected above TDEC and EPA reporting levels. Reporting levels are the lowest level a contaminant can be detected with present laboratory methods, which are also known as minimum detection limits. We are proud to report that the City of Kingsport's water meets or exceeds all drinking water standards.

Contaminant	Violation Yes / No	Level Found	Range of Detected	Date of Sample	Unit of Measurement	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria	No	0.9%	N/A	2015 Daily	Presence Absence	0	Presence of coliform bacteria in 5% of monthly samples	Naturally present in the environment
Turbidity ¹	No	0.05	0.04-0.19	2015	NTU	N/A	π	Soil runoff
Copper	No	90th%= 0.44	0 of 30 Samples Above Action Level	2014	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride	No	0.60	0—0.77	2015	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead ²	No	90th% = 3.5	0 of 30 Samples Above the Action Level	2014	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Nitrate ³	No	0.594	N/A	2015	ppm	10	10	Runoff from fertilizer use, leaching from septic tanks, sewage; erosion of natural deposits
Sodium	No	5.9	N/A	2015	ppm	N/A	N/A	Erosion of natural deposits used in water treatment
TTHM⁴ (Total trihalomethanes)	No	59 Quarterly Average	22—54	2015	ppb	N/A	80	By-product of drinking water chlorination
Haloacetic Acids (HAA5)	No	49 Quarterly Average	15—47	2015	ppb	N/A	60	By-product of drinking water disinfection
Total Organic Carbon⁵	No	1.28	0.93—1.56	2015	ppm	TT	π	Naturally present in the environment
Contaminant	Violation Yes / No	Level Found	Range of Detected	Date of Sample	Unit of Measurement	MRDLG	MRDL	Likely Source of Contamination
Chlorine	No	2.04 Annual Average	1.4—3.25	2015 Daily	ppm	4	4	Water additive used to control microbes

copper. Quarterly averages for total trihalomethanes and haloacetic acids contain some 2014 data; ranges reflect only 2015 data.

O of 30 samples exceeded the action level for lead and copper.

Special Information

Should I be Concerned? Do I need to take special precautions?

Some individuals may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with AIDS/HIV or other immune system disorders, some elderly, and infants can be particularly at risk of infection. These people should seek advice about drinking water from their healthcare providers. EPA guidelines on

appropriate means to lessen the risk of infection by microbiological organisms, contaminants, and potential health effects are available from EPA's Safe Drinking Water Hotline (1-800-426-4791).

Sources and Substances What types could be in my water?

As water travels over the surface of the land it dissolves naturally occurring minerals and, in some cases, radioactive material. It can also pick up substances resulting from the presence of animals or humans. Although these substances could be present in "raw" water, our water meets all of the EPA's health standards. We have tested for over 80 substances that may be present in our drinking water.

Substances that may be present in "raw" water include:

Microbial organisms, such as viruses and bacteria, which may be from sewage plants, septic systems, agricultural livestock operations and wildlife.

Inorganic compounds, such as salts and metals, which can be naturally occurring or result from storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides, which may come from a variety of sources, such as agriculture, storm water runoff and residential uses.

Organic chemicals including synthetic and volatile organic chemicals, which are the by-products of industrial processes and petroleum production, and can also come from gas stations, storm water runoff and septic systems.

Radioactive material, which can be naturally occurring, or be the result of oil and/or gas production and mining activities.

We found all of these substances to be at safe levels.

Unregulated Monitoring

2013 Unregulated Contaminant Monitoring

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. For additional information call the Safe Drinking Water Hotline at (800) 426-4791.

Unregulated Monitoring – Water Treatment Plant Monitoring

Contaminant	Date of Sample	Unit	Average Level Detected	Range of Detection
Chromium	2013	ppb	0.075	ND – 0.30
Hexavalent Chromium	2013	ppb	0.073	0.048 – 0.10
Stontium	2013	ppb	107.5	100 - 110
Vanadium	2013	ppb	0.138	0.23 – 0.32

Unregulated Monitoring – Distribution System Monitoring

Contaminant	Date of Sample	Unit	Average Level Detected	Range of Detection
Chlorate	2013	ppb	5.5	ND - 22
Chromium	2013	ppb	0.198	0.34 - 0.45
Hexavalent Chromium	2013	ppb	0.140	0.11 – 0.17
Stontium	2013	ppb	118	110 - 120
Vanadium	2013	ppb	0.308	0.27 – 0.38

Protect our Water

You Can Help Protect the Environment and Drinking Water Sources

Unused Medications

A few small steps can make an important difference in safeguarding lives and protecting the environment. Follow your medication prescriber's instructions and use all medications as instructed. If you do not use all of your prescribed or over-the-counter medication, you can take a few small steps to make a huge impact in safeguarding lives and protecting the environment by disposing of unused medicines properly: DO NOT FLUSH unused medications or POUR them down a sink or drain.

These medications travel through pipes to the Wastewater Treatment Plant. Wastewater Treatment Plants are not designed to remove unused medications and can pass through the treatment process ultimately entering our waterways.

Unused medications can be disposed of at the Kingsport Police Department's DRUG DROP OFF ZONE located at the Justice Center. For more information please call 229-9433.

To learn more about pharmaceuticals and drinking water visit https://www.tn.gov/environment/article/sp-unwanted-pharmaceuticals

Stormwater Runoff

Worried about water quality? Did you know that stormwater runoff is the leading cause of water-quality problems in the United States? The experts call it nonpoint source pollution. After heavy rain, millions of gallons of water containing soil, silt, oils and lubricants flow from properties into the natural world downstream. There it disturbs the breeding, feeding, and nurseries for the many species of invertebrates, fish and migratory birds.

Old attitudes about what happens beyond the four walls of your own home or your own business not being your problem are changing. Many in or around the City of Kingsport enjoy the benefit of outdoor recreation, hiking, and fishing. We need to take measures to care for the land we occupy and beyond by mitigating pollutants originating from our properties.

Homeowners can connect their sump pumps, roof drains, and downspouts into existing storm sewers and reduce the erosion caused by runoff.

Business owners can change the mentality of parking lots as drainage zones by turning them instead into flood control, infiltration and filtration zones. They can create retention

areas for runoff and fill them with plants that can survive periodic flooding. These basins slow the movement of water so that pollutants are captured, broken down and digested by plant life before they reach the watershed and estuaries.

Who benefits from such enlightened stormwater management? The water supply and frogs, fish, birds, turtles and other wildlife downstream, the very nature that we all want to enjoy.

Drinking Water Week

Sun

Your Water...to know it is to love it

Drinking Water Week May 1-7, 2016

Mon

Tue

Wed

Thu

Fri

Sat

For more than 30 years, the American Water Works Association has celebrated Drinking Water Week with its members. In 1988, AWWA brought the event to the attention of our government and formed a coalition along with the League of Women Voters, the Association of State Drinking Water Administrators, and the US Environmental Protection Agency. Rep. Robert Roe and Sen. Dennis DeConcini subsequently sponsored a resolution to name the first week of May as Drinking Water Week, and an information kit was distributed to the media and to more than 10,000 utilities. Willard Scott, the Today Show weatherman, was featured in public service announcements aired between May 2 and 8. The week-long observance was declared in a joint congressional resolution and signed by then President Ronald Reagan.

2016

The following year, AWWA approached several organizations to participate. Through these efforts, the National Drinking Water Alliance was formed of 15 nonprofit educational, professional, and public interest organizations. The Alliance dedicated itself to public awareness and involvement in public and private drinking water issues, and continued its work to organize a major annual educational campaign built around Drinking Water Week.

The power of the multi-organization Alliance enabled Drinking Water Week to grow into widespread and committed participation throughout the United States and Canada. In 1991, the Alliance launched a national campaign to inform the public about America's drinking water. The group distributed a kit containing ideas for celebrating Drinking Water Week, conservation fact and tip sheets, news release and posters. The theme was "There's a lot more to drinking water than meets the eye."

Drinking Water Week is celebrated during the first full week in May each year.